Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Glob Health ; 7(6): 748-760, Jun. 2019. gráfico, tabela
Artigo em Inglês | SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1046456

RESUMO

Background Socioeconomic status is associated with differences in risk factors for cardiovascular disease incidence and outcomes, including mortality. However, it is unclear whether the associations between cardiovascular disease and common measures of socioeconomic status­wealth and education­differ among high-income, middle-income, and low-income countries, and, if so, why these differences exist. We explored the association between education and household wealth and cardiovascular disease and mortality to assess which marker is the stronger predictor of outcomes, and examined whether any differences in cardiovascular disease by socioeconomic status parallel differences in risk factor levels or differences in management. Methods In this large-scale prospective cohort study, we recruited adults aged between 35 years and 70 years from 367 urban and 302 rural communities in 20 countries. We collected data on families and households in two questionnaires, and data on cardiovascular risk factors in a third questionnaire, which was supplemented with physical examination. We assessed socioeconomic status using education and a household wealth index. Education was categorized as no or primary school education only, secondary school education, or higher education, defined as completion of trade school, college, or university. Household wealth, calculated at the household level and with household data, was defined by an index on the basis of ownership of assets and housing characteristics. Primary outcomes were major cardiovascular disease (a composite of cardiovascular deaths, strokes, myocardial infarction, and heart failure), cardiovascular mortality, and all-cause mortality. Information on specific events was obtained from participants or their family. (AU)


Assuntos
Fatores Socioeconômicos , Doenças Cardiovasculares , Epidemiologia , Fatores de Risco
2.
Lancet Diabetes Endocrinol. (Online) ; 6(10): 798-808, Oct. 2018. tab, graf
Artigo em Inglês | SES-SP, CONASS, SESSP-IDPCPROD, SES-SP | ID: biblio-1179346

RESUMO

BACKGROUND: Data are scarce on the availability and affordability of essential medicines for diabetes. Our aim was to examine the availability and affordability of metformin, sulfonylureas, and insulin across multiple regions of the world and explore the effect of these on medicine use. METHODS: In the Prospective Urban Rural Epidemiology (PURE) study, participants aged 35­70 years (n=156625) were recruited from 110803 households, in 604 communities and 22 countries; availability (presence of any dose of medication in the pharmacy on the day of audit) and medicine cost data were collected from pharmacies with the Environmental Profile of a Community's Health audit tool. Our primary analysis was to describe the availability and affordability of metformin and insulin and also commonly used and prescribed combinations of two medicines for diabetes management (two oral drugs, metformin plus a sulphonylurea [either glibenclamide (also known as glyburide) or gliclazide] and one oral drug plus insulin [metformin plus insulin]). Medicines were defined as affordable if the cost of medicines was less than 20% of capacity-to-pay (the household income minus food expenditure). Our analyses included data collected in pharmacies and data from representative samples of households. Data on availability were ascertained during the pharmacy audit, as were data on cost of medications. These cost data were used to estimate the cost of a month's supply of essential medicines for diabetes. We estimated affordability of medicines using income data from household surveys. FINDINGS: Metformin was available in 113 (100%) of 113 pharmacies from high-income countries, 112 (88·2%) of 127 pharmacies in upper-middle-income countries, 179 (86·1%) of 208 pharmacies in lower-middle-income countries, 44 (64·7%) of 68 pharmacies in low-income countries (excluding India), and 88 (100%) of 88 pharmacies in India. Insulin was available in 106 (93·8%) pharmacies in high-income countries, 51 (40·2%) pharmacies in upper-middle-income countries, 61 (29·3%) pharmacies in lower-middle-income countries, seven (10·3%) pharmacies in lower-income countries, and 67 (76·1%) of 88 pharmacies in India. We estimated 0·7% of households in high-income countries and 26·9% of households in low-income countries could not afford metformin and 2·8% of households in high-income countries and 63·0% of households in low-income countries could not afford insulin. Among the 13 569 (8·6% of PURE participants) that reported a diagnosis of diabetes, 1222 (74·0%) participants reported diabetes medicine use in high-income countries compared with 143 (29·6%) participants in low-income countries. In multilevel models, availability and affordability were significantly associated with use of diabetes medicines.


Assuntos
Metformina/provisão & distribuição , Diabetes Mellitus/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA