Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol. Res ; 46(4): 452-462, 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-700407

RESUMO

Different culture systems have been studied that support development of somatic cell nuclear transfer (SCNT) embryos up to the blastocyst stage. However, the use of sequential and two-step culture systems has been less studied. The objective of the present study was to examine the developmental potential and quality of bovine SCNT embryos cultured in different two-step culture media based on KSOM, SOF and the macromolecules FBS and BSA (K-K/FBS, K-S/BSA and K-K/BSA, respectively). No differences were observed in the cleavage rate for any of the culture systems. However, there was a significant difference (P<0.01) in the rate of blastocyst development, with the K-K/ FBS culture system yielding a higher rate of blastocysts (28%) compared to other treatments (18 and 15%, for K-S/BSA and K-K/BSA, respectively). Although quality of embryos, as assessed by the total number of cells, was not different, the apoptosis index was significantly affected in the sequential culture system (K-S/BSA). Gene expression analysis showed alterations of DNMT1, IGF2, LIF, and PRDX6 genes in embryos cultured in K-S/FBS and of SOD2 in embryos cultured in K-K/BSA. In conclusion, we demonstrated that culture medium may affect not only the developmental potential of SCNT embryos but also, more importantly, the gene expression pattern and apoptotic index, presenting the possibility to manipulate the culture medium composition to modulate global gene expression and improve the overall efficiency of this technique.


Assuntos
Animais , Bovinos , Feminino , Blastocisto/fisiologia , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas de Transferência Nuclear/veterinária , Técnicas de Cultura Embrionária/métodos
2.
Braz. j. med. biol. res ; 45(12): 1234-1239, Dec. 2012. ilus
Artigo em Inglês | LILACS | ID: lil-659630

RESUMO

Nitric oxide (NO), synthesized as needed by NO synthase (NOS), is involved in spinogenesis and synaptogenesis. Immature spine morphology is characteristic of fragile X syndrome (FXS). The objective of this research was to investigate and compare changes of postnatal neuronal NOS (nNOS) expression in the hippocampus of male fragile X mental retardation 1 gene knockout mice (FMR1 KO mice, the animal model of FXS) and male wild-type mice (WT) at postnatal day 7 (P7), P14, P21, and P28. nNOS mRNA levels were analyzed by real-time quantitative PCR (N = 4-7) and nNOS protein was estimated by Western blot (N = 3) and immunohistochemistry (N = 1). In the PCR assessment, primers 5’-GTGGCCATCGTGTCCTACCATAC-3’ and 5’-GTTTCGAGGCAGGTGGAAGCTA-3’ were used for the detection of nNOS and primers 5’-CCGTTTCTCCTGGCTCAGTTTA-3’ and 5’-CCCCAATACCACATCATCCAT-3’ were used for the detection of β-actin. Compared to the WT group, nNOS mRNA expression was significantly decreased in FMR1 KO mice at P21 (KO: 0.2857 ± 0.0150, WT: 0.5646 ± 0.0657; P < 0.05). Consistently, nNOS immunoreactivity also revealed reduced staining intensity at P21 in the FMR1 KO group. Western blot analysis validated the immunostaining results by demonstrating a significant reduction in nNOS protein levels in the FMR1 KO group compared to the WT group at P21 (KO: 0.3015 ± 0.0897, WT: 1.7542 ± 0.5455; P < 0.05). These results suggest that nNOS was involved in the postnatal development of the hippocampus in FXS and impaired NO production may retard spine maturation in FXS.


Assuntos
Animais , Masculino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/crescimento & desenvolvimento , Óxido Nítrico Sintase Tipo I/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Camundongos Knockout , Óxido Nítrico Sintase Tipo I/genética , RNA Mensageiro/metabolismo
3.
Braz. j. med. biol. res ; 43(2): 176-185, Feb. 2010. tab, ilus, graf
Artigo em Inglês | LILACS | ID: lil-538231

RESUMO

The molecular mechanisms and potential clinical applications of neural precursor cells have recently been the subject of intensive study. Dlx5, a homeobox transcription factor related to the distal-less gene in Drosophila, was shown to play an important role during forebrain development. The subventricular zone (SVZ) in the adult brain harbors the largest abundance of neural precursors. The anterior SVZ (SVZa) contains the most representative neural precursors in the SVZ. Further research is necessary to elucidate how Dlx5-related genes regulate the differentiation of SVZa neural precursors. Here, we employed immunohistochemistry and molecular biology techniques to study the expression of Dlx5 and related homeobox genes Er81 and Islet1 in neonatal rat brain and in in vitro cultured SVZa neural precursors. Our results show that Dlx5 and Er81 are also highly expressed in the SVZa, rostral migratory stream, and olfactory bulb. Islet1 is only expressed in the striatum. In cultured SVZa neural precursors, Dlx5 mRNA expression gradually decreased with subsequent cell passages and was completely lost by passage four. We also transfected a Dlx5 recombinant plasmid and found that Dlx5 overexpression promoted neuronal differentiation of in vitro cultured SVZa neural precursors. Taken together, our data suggest that Dlx5 plays an important role during neuronal differentiation.


Assuntos
Animais , Ratos , Ventrículos Cerebrais/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Ventrículos Cerebrais/metabolismo , Proteínas de Homeodomínio/genética , Imuno-Histoquímica/métodos , Neurônios/fisiologia , Ratos Wistar , Transfecção
4.
Braz. j. med. biol. res ; 43(1): 25-35, Jan. 2010. tab, ilus
Artigo em Inglês | LILACS | ID: lil-535649

RESUMO

Integrins are heterodimeric receptors composed of á and â transmembrane subunits that mediate attachment of cells to the extracellular matrix and counter-ligands such as ICAM-1 on adjacent cells. â2 integrin (CD18) associates with four different á (CD11) subunits to form an integrin subfamily, which has been reported to be expressed exclusively on leukocytes. However, recent studies indicate that â2 integrin is also expressed by other types of cells. Since the gene for â2 integrin is located in the region of human chromosome 21 associated with congenital heart defects, we postulated that it may be expressed in the developing heart. Here, we show the results from several different techniques used to test this hypothesis. PCR analyses indicated that â2 integrin and the áL, áM, and áX subunits are expressed during heart development. Immunohistochemical studies in both embryonic mouse and chicken hearts, using antibodies directed against the N- or C-terminal of â2 integrin or against its á subunit partners, showed that â2 integrin, as well as the áL, áM, and áX subunits, are expressed by the endothelial and mesenchymal cells of the atrioventricular canal and in the epicardium and myocardium during cardiogenesis. In situ hybridization studies further confirmed the presence of â2 integrin in these various locations in the embryonic heart. These results indicate that the â2 integrin subfamily may have other activities in addition to leukocyte adhesion, such as modulating the migration and differentiation of cells during the morphogenesis of the cardiac valves and myocardial walls of the heart.


Assuntos
Animais , Embrião de Galinha , Feminino , Camundongos , Gravidez , /metabolismo , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Morfogênese/fisiologia , /genética , Embrião de Mamíferos , Coração/embriologia , Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA