Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Transpl Int ; 37: 11900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304198

RESUMEN

The generation of insulin-producing cells from human-induced pluripotent stem cells holds great potential for diabetes modeling and treatment. However, existing protocols typically involve incubating cells with un-physiologically high concentrations of glucose, which often fail to generate fully functional IPCs. Here, we investigated the influence of high (20 mM) versus low (5.5 mM) glucose concentrations on IPCs differentiation in three hiPSC lines. In two hiPSC lines that were unable to differentiate to IPCs sufficiently, we found that high glucose during differentiation leads to a shortage of NKX6.1+ cells that have co-expression with PDX1 due to insufficient NKX6.1 gene activation, thus further reducing differentiation efficiency. Furthermore, high glucose during differentiation weakened mitochondrial respiration ability. In the third iPSC line, which is IPC differentiation amenable, glucose concentrations did not affect the PDX1/NKX6.1 expression and differentiation efficiency. In addition, glucose-stimulated insulin secretion was only seen in the differentiation under a high glucose condition. These IPCs have higher KATP channel activity and were linked to sufficient ABCC8 gene expression under a high glucose condition. These data suggest high glucose concentration during IPC differentiation is necessary to generate functional IPCs. However, in cell lines that were IPC differentiation unamenable, high glucose could worsen the situation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/metabolismo , Diferenciación Celular , Glucosa/farmacología , Glucosa/metabolismo
2.
Electrophoresis ; 44(21-22): 1682-1697, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37574258

RESUMEN

For studying stem cell-derived islet organoids (SC-islets) in an organ-on-chip (OoC) platform, we have developed a reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method allowing for simultaneous determination of insulin, somatostatin-14, and glucagon, with improved matrix robustness compared to earlier methodology. Combining phenyl/hexyl-C18 separations using 2.1 mm inner diameter LC columns and triple quadrupole mass spectrometry, identification and quantification were secured with negligible variance in retention time and quantifier/qualifier ratios, negligible levels of carryover (<2%), and sufficient precision (±10% RSD) and accuracy (±15% relative error) with and without use of an internal standard. The obtained lower limits of quantification were 0.2 µg/L for human insulin, 0.1 µg/L for somatostatin-14, and 0.05 µg/L for glucagon. The here-developed RPLC-MS/MS method showed that the SC-islets have an insulin response dependent on glucose concentration, and the SC-islets produce and release somatostatin-14 and glucagon. The RPLC-MS/MS method for these peptide hormones was compatible with an unfiltered offline sample collection from SC-islets cultivated on a pumpless, recirculating OoC (rOoC) platform. The SC-islets background secretion of insulin was not significantly different on the rOoC device compared to a standard cell culture well-plate. Taken together, RPLC-MS/MS method is well suited for multi-hormone measurements of SC-islets on an OoC platform.


Asunto(s)
Glucagón , Islotes Pancreáticos , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Glucosa , Islotes Pancreáticos/fisiología , Insulina , Péptidos , Somatostatina , Organoides , Células Madre
3.
Artículo en Inglés | MEDLINE | ID: mdl-36542899

RESUMEN

Organoids are laboratory-grown 3D organ models, mimicking human organs for e.g. drug development and personalized therapy. Islet organoids (typically 100-200 µm), which can be grown from the patient́s own cells, are emerging as prototypes for transplantation-based therapy of diabetes. Selective methods for quantifying insulin production from islet organoids are needed, but sensitivity and carry-over have been major bottlenecks in previous efforts. We have developed a reverse phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method for studying the insulin secretion of islet organoids. In contrast to our previous attempts using nano-scale LC columns, conventional 2.1 mm inner diameter LC column (combined with triple quadrupole mass spectrometry) was well suited for sensitive and selective measurements of insulin secreted from islet organoids with low microliter-scale samples. Insulin is highly prone to carry-over, so standard tubings and injector parts were replaced with shielded fused silica connectors. As samples were expected to be very limited, an extended Box-Behnken experimental design for the MS settings was conducted to maximize performance. The finale method has excellent sensitivity, accuracy and precision (limit of detection: ≤0.2 pg/µL, relative error: ≤±10%, relative standard deviation: <10%), and was well suited for measuring 20 µL amounts of Krebs buffer containing insulin secreted from islet organoids.


Asunto(s)
Organoides , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Secreción de Insulina , Cromatografía Liquida/métodos , Organoides/metabolismo , Insulina/metabolismo , Células Madre/metabolismo
4.
Curr Diab Rep ; 20(12): 72, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33206261

RESUMEN

PURPOSE OF REVIEW: Human pancreas-on-a-chip (PoC) technology is quickly advancing as a platform for complex in vitro modeling of islet physiology. This review summarizes the current progress and evaluates the possibility of using this technology for clinical islet transplantation. RECENT FINDINGS: PoC microfluidic platforms have mainly shown proof of principle for long-term culturing of islets to study islet function in a standardized format. Advancement in microfluidic design by using imaging-compatible biomaterials and biosensor technology might provide a novel future tool for predicting islet transplantation outcome. Progress in combining islets with other tissue types gives a possibility to study diabetic interventions in a minimal equivalent in vitro environment. Although the field of PoC is still in its infancy, considerable progress in the development of functional systems has brought the technology on the verge of a general applicable tool that may be used to study islet quality and to replace animal testing in the development of diabetes interventions.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Humanos , Dispositivos Laboratorio en un Chip , Páncreas , Tecnología
5.
Diabetologia ; 63(7): 1355-1367, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32350565

RESUMEN

AIMS/HYPOTHESIS: Inflammatory signals and increased prostaglandin synthesis play a role during the development of diabetes. The prostaglandin D2 (PGD2) receptor, GPR44/DP2, is highly expressed in human islets and activation of the pathway results in impaired insulin secretion. The role of GPR44 activation on islet function and survival rate during chronic hyperglycaemic conditions is not known. In this study, we investigate GPR44 inhibition by using a selective GPR44 antagonist (AZ8154) in human islets both in vitro and in vivo in diabetic mice transplanted with human islets. METHODS: Human islets were exposed to PGD2 or proinflammatory cytokines in vitro to investigate the effect of GPR44 inhibition on islet survival rate. In addition, the molecular mechanisms of GPR44 inhibition were investigated in human islets exposed to high concentrations of glucose (HG) and to IL-1ß. For the in vivo part of the study, human islets were transplanted under the kidney capsule of immunodeficient diabetic mice and treated with 6, 60 or 100 mg/kg per day of a GPR44 antagonist starting from the transplantation day until day 4 (short-term study) or day 17 (long-term study) post transplantation. IVGTT was performed on mice at day 10 and day 15 post transplantation. After termination of the study, metabolic variables, circulating human proinflammatory cytokines, and hepatocyte growth factor (HGF) were analysed in the grafted human islets. RESULTS: PGD2 or proinflammatory cytokines induced apoptosis in human islets whereas GPR44 inhibition reversed this effect. GPR44 inhibition antagonised the reduction in glucose-stimulated insulin secretion induced by HG and IL-1ß in human islets. This was accompanied by activation of the Akt-glycogen synthase kinase 3ß signalling pathway together with phosphorylation and inactivation of forkhead box O-1and upregulation of pancreatic and duodenal homeobox-1 and HGF. Administration of the GPR44 antagonist for up to 17 days to diabetic mice transplanted with a marginal number of human islets resulted in reduced fasting blood glucose and lower glucose excursions during IVGTT. Improved glucose regulation was supported by increased human C-peptide levels compared with the vehicle group at day 4 and throughout the treatment period. GPR44 inhibition reduced plasma levels of TNF-α and growth-regulated oncogene-α/chemokine (C-X-C motif) ligand 1 and increased the levels of HGF in human islets. CONCLUSIONS/INTERPRETATION: Inhibition of GPR44 in human islets has the potential to improve islet function and survival rate under inflammatory and hyperglycaemic stress. This may have implications for better survival rate of islets following transplantation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Islotes Pancreáticos/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/antagonistas & inhibidores , Receptores de Prostaglandina/metabolismo , Factores de Transcripción/metabolismo , Apoptosis/fisiología , Western Blotting , Muerte Celular/fisiología , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina/fisiología , Prostaglandina D2 , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Front Cell Dev Biol ; 8: 109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161757

RESUMEN

Generating insulin-producing ß-cells from human induced pluripotent stem cells is a promising cell replacement therapy for improving or curing insulin-dependent diabetes. The transplantation of end-stages differentiating cells into living hosts was demonstrated to improve ß-cell maturation. Nevertheless, the cellular and molecular mechanisms outlining the transplanted cells' response to the in vivo environment are still to be properly characterized. Here we use global proteomics and large-scale imaging techniques to demultiplex and filter the cellular processes and molecular signatures modulated by the immediate in vivo effect. We show that in vivo exposure swiftly confines in vitro generated human pancreatic progenitors to single hormone expression. The global proteome landscape of the transplanted cells was closer to native human islets, especially in regard to energy metabolism and redox balance. Moreover, our study indicates a possible link between these processes and certain epigenetic regulators involved in cell identity. Pathway analysis predicted HNF1A and HNF4A as key regulators controlling the in vivo islet-promoting response, with experimental evidence suggesting their involvement in confining islet cell fate following xeno-transplantation.

7.
Sci Rep ; 10(1): 414, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31942009

RESUMEN

Cell replacement therapies hold great therapeutic potential. Nevertheless, our knowledge of the mechanisms governing the developmental processes is limited, impeding the quality of differentiation protocols. Generating insulin-expressing cells in vitro is no exception, with the guided series of differentiation events producing heterogeneous cell populations that display mixed pancreatic islet phenotypes and immaturity. The achievement of terminal differentiation ultimately requires the in vivo transplantation of, usually, encapsulated cells. Here we show the impact of cell confinement on the pancreatic islet signature during the guided differentiation of alginate encapsulated human induced pluripotent stem cells (hiPSCs). Our results show that encapsulation improves differentiation by significantly reshaping the proteome landscape of the cells towards an islet-like signature. Pathway analysis is suggestive of integrins transducing the encapsulation effect into intracellular signalling cascades promoting differentiation. These analyses provide a molecular framework for understanding the confinement effects on hiPSCs differentiation while confirming its importance for this process.


Asunto(s)
Alginatos/farmacología , Biomarcadores/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Integrinas/metabolismo , Islotes Pancreáticos/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Fenotipo , Transducción de Señal
8.
Acta Physiol (Oxf) ; 228(4): e13433, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31872528

RESUMEN

AIM: The loss of insulin-secreting ß-cells, ultimately characterizing most diabetes forms, demands the development of cell replacement therapies. The common endpoint for all ex vivo strategies is transplantation into diabetic patients. However, the effects of hyperglycaemia environment on the transplanted cells were not yet properly assessed. Thus, the main goal of this study was to characterize global effect of brief and prolonged in vivo hyperglycaemia exposure on the cell fate acquisition and maintenance of transplanted human pancreatic progenitors. METHODS: To rigorously study the effect of hyperglycaemia, in vitro differentiated human-induced pluripotent stem cells (hiPSC)-derived pancreatic progenitors were xenotransplanted in normoglycaemic and diabetic NSG rat insulin promoter (RIP)-diphtheria toxin receptor (DTR) mice. The transplants were retrieved after 1-week or 1-month exposure to overt hyperglycaemia and analysed by large-scale microscopy or global proteomics. For this study we pioneer the use of the NSG RIP-DTR system in the transplantation of hiPSC, making use of its highly reproducible specific and absolute ß-cell ablation property in the absence of inflammation or other organ toxicity. RESULTS: Here we show for the first time that besides the presence of an induced oxidative stress signature, the cell fate and proteome landscape response to hyperglycaemia was different, involving largely different mechanisms, according to the period spent in the hyperglycaemic environment. Surprisingly, brief hyperglycaemia exposure increased the bihormonal cell number by impeding the activity of specific islet lineage determinants. Moreover, it activated antioxidant and inflammation protection mechanisms signatures in the transplanted cells. In contrast, the prolonged exposure was characterized by decreased numbers of hormone + cells, low/absent detoxification signature, augmented production of oxygen reactive species and increased apoptosis. CONCLUSION: Hyperglycaemia exposure induced distinct, period-dependent, negative effects on xenotransplanted human pancreatic progenitor, affecting their energy homeostasis, cell fate acquisition and survival.


Asunto(s)
Diferenciación Celular/fisiología , Hiperglucemia/fisiopatología , Células Madre Pluripotentes Inducidas/fisiología , Células Secretoras de Insulina/fisiología , Estrés Oxidativo/fisiología , Adulto , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/trasplante , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Regiones Promotoras Genéticas , Ratas , Trasplante Heterólogo
9.
J Mol Endocrinol ; 60(3): 171-183, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29330151

RESUMEN

Interleukin (IL)-22 has recently been suggested as an anti-inflammatory cytokine that could protect the islet cells from inflammation- and glucose-induced toxicity. We have previously shown that the tumor necrosis factor family member, LIGHT, can impair human islet function at least partly via pro-apoptotic effects. Herein, we aimed to investigate the protective role of IL-22 on human islets exposed to the combination of hyperglycemia and LIGHT. First, we found upregulation of LIGHT receptors (LTßR and HVEM) in engrafted human islets exposed to hyperglycemia (>11 mM) for 17 days post transplantation by using a double islet transplantation mouse model as well as in human islets cultured with high glucose (HG) (20 mM glucose) + LIGHT in vitro, and this latter effect was attenuated by IL-22. The effect of HG + LIGHT impairing glucose-stimulated insulin secretion was reversed by IL-22. The harmful effect of HG + LIGHT on human islet function seemed to involve enhanced endoplasmic reticulum stress evidenced by upregulation of p-IRE1α and BiP, elevated secretion of pro-inflammatory cytokines (IL-6, IL-8, IP-10 and MCP-1) and the pro-coagulant mediator tissue factor (TF) release and apoptosis in human islets, whereas all these effects were at least partly reversed by IL-22. Our findings suggest that IL-22 could counteract the harmful effects of LIGHT/hyperglycemia on human islet cells and potentially support the strong protective effect of IL-22 on impaired islet function and survival.


Asunto(s)
Apoptosis/efectos de los fármacos , Hiperglucemia/patología , Interleucinas/farmacología , Islotes Pancreáticos/patología , Islotes Pancreáticos/fisiopatología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/toxicidad , Adulto , Anciano , Animales , Citocinas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Trasplante de Islotes Pancreáticos , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Receptores de Interleucina/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Adulto Joven , Interleucina-22
10.
Sci Rep ; 7(1): 1575, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28484241

RESUMEN

One of the key limitations to successful human islet transplantation is loss of islets due to stress responses pre- and post-transplantation. Nutrient deprivation and ER stress have been identified as important mechanisms leading to apoptosis. Glial Cell-line Derived Neurotrophic Factor (GDNF) has recently been found to promote islet survival after isolation. However, whether GDNF could rescue human islets from nutrient deprivation and ER stress-mediated apoptosis is unknown. Herein, by mimicking those conditions in vitro, we have shown that GDNF significantly improved glucose stimulated insulin secretion, reduced apoptosis and proinsulin:insulin ratio in nutrient deprived human islets. Furthermore, GDNF alleviated thapsigargin-induced ER stress evidenced by reduced expressions of IRE1α and BiP and consequently apoptosis. Importantly, this was associated with an increase in phosphorylation of PI3K/AKT and GSK3B signaling pathway. Transplantation of ER stressed human islets pre-treated with GDNF under kidney capsule of diabetic mice resulted in reduced expressions of IRE1α and BiP in human islet grafts with improved grafts function shown by higher levels of human C-peptide post-transplantation. We suggest that GDNF has protective and anti-apoptotic effects on nutrient deprived and ER stress activated human islets and could play a significant role in rescuing human islets from stress responses.


Asunto(s)
Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Islotes Pancreáticos/patología , Sustancias Protectoras/farmacología , Adulto , Anciano , Animales , Femenino , Humanos , Trasplante de Islotes Pancreáticos , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Supervivencia Tisular/efectos de los fármacos , Adulto Joven
11.
Transpl Int ; 28(10): 1152-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26046470

RESUMEN

MAIN PROBLEM: Islet transplantation has become a promising treatment for type 1 diabetes. However, immunosuppressive drugs used today cause islet deterioration and modification strategies are necessary. But little is known about pharmacokinetics interactions and intracellular concentrations of immunosuppressive drugs in human islets. METHODS: We determined the pharmacokinetics of tacrolimus and sirolimus in islets by measuring intracellular concentration after exposure alone or in combination at two different doses up to 48 h. A quantification technique established in our laboratory using a Micromass Quattro micro API MS/MS-instrument with electrospray ionization was used. Islets function was measured by oxygen consumption rates. Presence of drug transporters OATP1B1 and ABCB1 and metabolizing enzyme CYP3A4 in islets were quantified using real-time quantitative PCR. RESULTS: Islets incubated with tacrolimus and sirolimus had a significant decrease in intracellular concentration of sirolimus compared to sirolimus alone. Reduced intracellular sirolimus concentration was followed by increased p70S6k phosphorylation suggesting preservation of the mTOR-signaling pathway. Drug transporters OATP1B1 and ABCB1 and enzyme CYP3A4 were expressed in human islets, but were not involved in the reduced sirolimus concentration by tacrolimus. CONCLUSION: These findings provide new knowledge of the drug interaction between tacrolimus and sirolimus, suggesting that tacrolimus has an inhibitory effect on the intracellular concentration of sirolimus in human islets.


Asunto(s)
Inmunosupresores/metabolismo , Islotes Pancreáticos/metabolismo , Sirolimus/metabolismo , Tacrolimus/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adulto , Anciano , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Ciclosporina/farmacología , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Glucosa/farmacología , Humanos , Inmunosupresores/farmacología , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Transportador 1 de Anión Orgánico Específico del Hígado , Persona de Mediana Edad , Transportadores de Anión Orgánico/metabolismo , Concentración Osmolar , Consumo de Oxígeno/efectos de los fármacos , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tacrolimus/metabolismo , Adulto Joven
12.
PLoS One ; 10(3): e0121204, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793295

RESUMEN

Islet transplantation has become a viable clinical treatment, but is still compromised by long-term graft failure. Exendin-4, a glucagon-like peptide 1 receptor agonist, has in clinical studies been shown to improve insulin secretion in islet transplanted patients. However, little is known about the effect of exendin-4 on other metabolic parameters. We therefore aimed to determine what influence exendin-4 would have on revascularized minimal human islet grafts in a state of graft failure in terms of glucose metabolism, body weight, lipid levels and graft survival. Introducing the bilateral, subcapsular islet transplantation model, we first transplanted diabetic mice with a murine graft under the left kidney capsule sufficient to restore normoglycemia. After a convalescent period, we performed a second transplantation under the right kidney capsule with a minimal human islet graft and allowed for a second recovery. We then performed a left-sided nephrectomy, and immediately started treatment with exendin-4 with a low (20µg/kg/day) or high (200µg/kg/day) dose, or saline subcutaneously twice daily for 15 days. Blood was sampled, blood glucose and body weight monitored. The transplanted human islet grafts were collected at study end point and analyzed. We found that exendin-4 exerts its effect on failing human islet grafts in a bell-shaped dose-response curve. Both doses of exendin-4 equally and significantly reduced blood glucose. Glucagon-like peptide 1 (GLP-1), C-peptide and pro-insulin were conversely increased. In the course of the treatment, body weight and cholesterol levels were not affected. However, immunohistochemistry revealed an increase in beta cell nuclei count and reduced TUNEL staining only in the group treated with a low dose of exendin-4 compared to the high dose and control. Collectively, these results suggest that exendin-4 has a potential rescue effect on failing, revascularized human islets in terms of lowering blood glucose, maintaining beta cell numbers, and improving metabolic parameters during hyperglycemic stress.


Asunto(s)
Supervivencia de Injerto/efectos de los fármacos , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/irrigación sanguínea , Péptidos/farmacología , Ponzoñas/farmacología , Animales , Apoptosis/efectos de los fármacos , Glucemia/metabolismo , Péptido C/metabolismo , Recuento de Células , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/terapia , Exenatida , Ayuno/sangre , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Hiperglucemia/sangre , Hiperglucemia/complicaciones , Hiperglucemia/tratamiento farmacológico , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Modelos Animales , Péptidos/administración & dosificación , Péptidos/uso terapéutico , Ponzoñas/administración & dosificación , Ponzoñas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA