Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ophthalmic Genet ; 36(4): 333-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24547928

RESUMEN

BACKGROUND: Leber congenital amaurosis (LCA) is a severe form of retinal dystrophy with marked underlying genetic heterogeneity. Until recently, allele-specific assays and Sanger sequencing of targeted segments were the only available approaches for attempted genetic diagnosis in this condition. A broader next-generation sequencing (NGS) strategy, such as whole exome sequencing, provides an improved molecular genetic diagnostic capacity for patients with these conditions. MATERIALS AND METHODS: In a child with LCA, an allele-specific assay analyzing 135 known LCA-causing variations, followed by targeted segment sequencing of 61 regions in 14 causative genes was performed. Subsequently, exome sequencing was undertaken in the proband, unaffected consanguineous parents and two unaffected siblings. Bioinformatic analysis used two independent pipelines, BWA-GATK and SOAP, followed by Annovar and SnpEff to annotate the variants. RESULTS: No disease-causing variants were found using the allele-specific or targeted segment Sanger sequencing assays. Analysis of variants in the exome sequence data revealed a novel homozygous nonsense mutation (c.1081C > T, p.Arg361*) in TULP1, a gene with roles in photoreceptor function where mutations were previously shown to cause LCA and retinitis pigmentosa. The identified homozygous variant was the top candidate using both bioinformatic pipelines. CONCLUSIONS: This study highlights the value of the broad sequencing strategy of exome sequencing for disease gene identification in LCA, over other existing methods. NGS is particularly beneficial in LCA where there are a large number of causative disease genes, few distinguishing clinical features for precise candidate disease gene selection, and few mutation hotspots in any of the known disease genes.


Asunto(s)
Codón sin Sentido , Proteínas del Ojo/genética , Amaurosis Congénita de Leber/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Consanguinidad , Análisis Mutacional de ADN , Electrorretinografía , Exoma/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Amaurosis Congénita de Leber/diagnóstico , Amaurosis Congénita de Leber/fisiopatología , Datos de Secuencia Molecular , Linaje , Polimorfismo de Nucleótido Simple , Agudeza Visual/fisiología
2.
Am J Hum Genet ; 92(6): 1001-7, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23731542

RESUMEN

Infantile myofibromatosis (IM) is a disorder of mesenchymal proliferation characterized by the development of nonmetastasizing tumors in the skin, muscle, bone, and viscera. Occurrence within families across multiple generations is suggestive of an autosomal-dominant (AD) inheritance pattern, but autosomal-recessive (AR) modes of inheritance have also been proposed. We performed whole-exome sequencing (WES) in members of nine unrelated families clinically diagnosed with AD IM to identify the genetic origin of the disorder. In eight of the families, we identified one of two disease-causing mutations, c.1978C>A (p.Pro660Thr) and c.1681C>T (p.Arg561Cys), in PDGFRB. Intriguingly, one family did not have either of these PDGFRB mutations but all affected individuals had a c.4556T>C (p.Leu1519Pro) mutation in NOTCH3. Our studies suggest that mutations in PDGFRB are a cause of IM and highlight NOTCH3 as a candidate gene. Further studies of the crosstalk between PDGFRB and NOTCH pathways may offer new opportunities to identify mutations in other genes that result in IM and is a necessary first step toward understanding the mechanisms of both tumor growth and regression and its targeted treatment.


Asunto(s)
Genes Dominantes , Mutación Missense , Miofibromatosis/congénito , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Miofibromatosis/genética , Linaje , Receptor Notch3 , Receptores Notch/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA