Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Neurobiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046702

RESUMEN

Spinal cord injury (SCI) is a neurodegenerative disorder that has critical impact on patient's life expectance and life span, and this disorder also leads to negative socioeconomic features. SCI is defined as a firm collision to the spinal cord which leads to the fracture and the dislocation of vertebrae. The current available treatment is surgery. However, it cannot fully treat SCI, and many consequences remain after the surgery. Accordingly, finding new therapeutics is critical. BDNF-TrkB signaling is a vital signaling in neuronal differentiation, survival, overgrowth, synaptic plasticity, etc. Hence, many studies evaluate its impact on various neurodegenerative disorders. There are several studies evaluating this signaling in SCI, and they show promising outcomes. It was shown that various exercises, chemical interventions, etc. had significant positive impact on SCI by affecting BDNF-TrkB signaling pathway. This study aims to accumulate and evaluate these data and inspect whether this signaling is effective or not.

2.
Expert Opin Ther Pat ; 34(9): 733-757, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38958471

RESUMEN

INTRODUCTION: COX-2 is a crucial enzyme in the manufacture of prostaglandins. The enzyme's metabolites might have an important function as regulators of the inflammatory response and other medical conditions such as cancer. Selective COX-2 inhibitors are believed to enhance or reverse the response of cancer chemotherapeutics. AREAS COVERED: This study addresses the chemical structures as well as the antitumor activity of new COX-2 inhibitors produced in the recent five years, aiming to provide an insight into the mechanism of COX-2 induced PGE2 powerful signal in cancer development. EXPERT OPINION: The significance of selective COX-2 inhibitors as an efficient superfamily of compounds with anti-inflammatory, anti-Alzheimer's, anti-Parkinson's disease, and anticancer properties has piqued the passion of academics in the field of drug development. Long-term usage of selective COX-2 inhibitors, such as celecoxib has been proven in clinical trials to lower the incidence of several human malignancies. Furthermore, celecoxib has the potential to greatly increase the effectiveness of chemotherapy. Our extensive understanding of selective COX-2 inhibitor SAR may aid in the development of safer and more effective selective COX-2 inhibitors as cancer chemopreventive agents. This review focuses on the different structural classes of selective COX-2 inhibitors, with a particular emphasis on their SAR.


Asunto(s)
Antineoplásicos , Inhibidores de la Ciclooxigenasa 2 , Ciclooxigenasa 2 , Desarrollo de Medicamentos , Neoplasias , Patentes como Asunto , Humanos , Inhibidores de la Ciclooxigenasa 2/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Animales , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/efectos de los fármacos , Relación Estructura-Actividad , Dinoprostona/metabolismo , Diseño de Fármacos
3.
Curr Dev Nutr ; 8(5): 102162, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38800633

RESUMEN

The health benefits of fermenting plant-derived products remain an underexplored domain. Plants and other natural products serve as medicinal agents when consumed as part of our diets, and the role of microorganisms in fermentation garners significant scientific interest. The present narrative review investigates the effects of fermentation of substances such as plants, algae, and fungi on their therapeutic and related purposes. Among the microorganisms used in fermentation, lactic acid bacteria are often linked to fermented products, particularly dairy and animal-based ones, and take center stage. These microorganisms are adept at synthesizing vitamins, active peptides, minerals, proteinases, and enzymes. Plant-derived fermented products are a significant source of active peptides, phytochemicals, flavonoids, and bioactive molecules with a profound impact on human health. They exhibit anti-inflammatory, anticarcinogenic, antiatherosclerotic, antidiabetic, antimicrobial, and antioxidant properties, the effects being substantiated by experimental studies. Clinical investigations underscore their effectiveness in managing diverse health conditions. Various studies highlight a synergy between microorganisms and plant-based materials, with fermentation as an innovative method for daily food preparation or a treatment option for specific ailments. These promising findings highlight the need for continued scientific inquiry into the impact of fermentation-derived products in clinical settings. Clinical observations to date have offered valuable insights into health improvement for various disorders. This current narrative review explores the impact of natural and plant-originated fermented products on health and well-being.

4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 7061-7070, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38643451

RESUMEN

Cisplatin (Cis) is a platinum-based antineoplastic drug used in various types of cancers. This drug can induce nephrotoxicity as a cause of acute kidney injury (AKI) by inducing oxidative stress and inflammation. Empagliflozin (Empa) is a newly developed inhibitor of sodium-glucose cotransporter-2 (SGLT2) approved as an antidiabetic medication for patients with type 2 diabetes mellitus. In addition to its blood glucose-lowering effect, Empa has been shown to exert anti-inflammatory and anti-oxidant properties. The current study aimed to investigate the protective effects of Empa on Cis-induced nephrotoxicity in rats. Male Wistar albino rats were divided into five groups, each of six rats: Sham group (received vehicle for 7 days), Control group (received vehicle for 7 days and Cis injection on day 2), Cis + Empa10 (received 10mg/kg Empa for 7 days and Cis injection on day 2), Cis + Empa30 (received 30mg/kg Empa for 7 days and Cis injection on day 2) and, Empa 30 (received 30mg/kg Empa for 7 days). One day after the last injection in each group, rats were weighed and then sacrificed to analyze the hematological, biochemical, and histological parameters. Cis markedly increased levels of inflammatory parameters such as renal tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, and myeloperoxidase (MPO) activity. Notably, malondialdehyde (MDA), blood urea nitrogen (BUN), and creatinine levels were enhanced after Cis administration. Also, the chemotherapeutic agent significantly reduced antioxidant indicators such as renal catalase (CAT), glutathione peroxidase (GpX), and superoxide dismutase (SOD). Furthermore, histopathological examinations also revealed severe renal damage following Cis treatment which was improved by Empa administration. Empa treatment at both doses (10 mg/kg and 30 mg/kg) reversed Cis-induced changes in all the above renal parameters. In conclusion, Empa has protective effects on Cis-induced nephrotoxicity by inhibition of oxidative stress and inflammation.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Compuestos de Bencidrilo , Cisplatino , Glucósidos , Estrés Oxidativo , Ratas Wistar , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Estrés Oxidativo/efectos de los fármacos , Glucósidos/farmacología , Glucósidos/uso terapéutico , Cisplatino/toxicidad , Masculino , Compuestos de Bencidrilo/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Antineoplásicos/toxicidad , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Inflamación/metabolismo , Inflamación/inducido químicamente , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
5.
Mol Neurobiol ; 61(10): 7732-7750, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38427213

RESUMEN

Inflammation in the nervous system is one of the key features of many neurodegenerative diseases. It is increasingly being identified as a critical pathophysiological primitive mechanism associated with chronic neurodegenerative diseases following traumatic brain injury (TBI). Phytochemicals have a wide range of clinical properties due to their antioxidant and anti-inflammatory effects. Currently, there are few drugs available for the treatment of neurodegenerative diseases other than symptomatic relief. Numerous studies have shown that plant-derived compounds, in particular polyphenols, protect against various neurodegenerative diseases and are safe for consumption. Polyphenols exert protective effects on TBI via restoration of nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR4), and Nod-like receptor family proteins (NLRPs) pathways. In addition, these phytochemicals and their derivatives upregulate the phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, which have critical functions in modulating TBI symptoms. There is supporting evidence that medicinal plants and phytochemicals are protective in different TBI models, though future clinical trials are needed to clarify the precise mechanisms and functions of different polyphenolic compounds in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Fármacos Neuroprotectores , Fitoquímicos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Animales , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Polifenoles/farmacología , Polifenoles/uso terapéutico
6.
Artículo en Inglés | MEDLINE | ID: mdl-38361356

RESUMEN

BACKGROUND: Cinnamic acid, an active compound in cinnamon spp., has anti-inflammatory and antioxidant characteristics and is favorable in managing inflammatory bowel diseases. OBJECTIVES: Evaluate cinnamic acid's effects on colitis in rats. METHODS: To induce colitis in experimental rats, excluding the sham group, a 4% intrarectal solution of acetic acid was administered. The rats were then given oral doses of cinnamic acid at 30, 45, and 90 mg/kg for two days. The animals were assessed for macroscopic and microscopic changes, and the levels of inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and myeloperoxidase (MPO) were measured using Eliza kits. Additionally, real-time PCR was performed to examine the gene level of toll-like receptor 4 (TLR-4) in the colon. RESULTS: Effective reduction of inflammation in acetic acid-induced colitis was achieved through Cinnamic acid administration at doses of 45 and 90 mg/kg. The decrease was achieved by inhibiting the activities of TNF-α, IL-6, and MPO while downregulating the expression of TLR-4. It is important to note that macroscopic and microscopic evaluations were significant in determining the effectiveness of cinnamic acid in reducing inflammation. CONCLUSION: Downregulation of inflammatory cytokines and TLR-4 expression may contribute to cinnamic acid's anti-inflammatory effect.


Asunto(s)
Ácido Acético , Antiinflamatorios , Cinamatos , Colitis , Modelos Animales de Enfermedad , Peroxidasa , Receptor Toll-Like 4 , Animales , Masculino , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Cinamatos/farmacología , Cinamatos/uso terapéutico , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Interleucina-6/metabolismo , Peroxidasa/metabolismo , Ratas Wistar , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Can J Physiol Pharmacol ; 102(3): 150-160, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955633

RESUMEN

The Toll-like receptor (TLR)/mammalian target of rapamycin (mTOR) signaling pathway is involved in the intracellular regulation of protein synthesis, specifically the ones that mediate neuronal morphology and facilitate synaptic plasticity. The activity of TLR/mTOR signaling has been disrupted, leading to neurodevelopment and deficient synaptic plasticity, which are the main symptoms of schizophrenia. The TLR receptor activates the mTOR signaling pathway and increases the elevation of inflammatory cytokines. Interleukin (IL)-6 is the most commonly altered cytokine, while IL-1, tumor necrosis factor, and interferon (IFN) also lead to SCZ. Anti-inflammatory and anti-oxidative agents such as celecoxib, aspirin, minocycline, and omega-3 fatty acids have shown efficiency against SCZ. As a result, inhibition of the inflammatory process could be suggested for the treatment of SCZ. So mTOR/TLR blockers represent the treatment of SCZ due to their inflammatory consequences. The objective of the present work was to find a novel anti-inflammatory agent that may block the mTOR/TLR inflammatory signaling pathways and might pave the way for the treatment of neuroinflammatory SCZ. Data were collected from experimental and clinical studies published in English between 1998 and October 2022 from Google Scholar, PubMed, Scopus, and the Cochrane library.


Asunto(s)
Esquizofrenia , Humanos , Aspirina , Citocinas , Interleucina-6 , Esquizofrenia/tratamiento farmacológico , Transducción de Señal , Serina-Treonina Quinasas TOR
8.
Artículo en Inglés | MEDLINE | ID: mdl-37936449

RESUMEN

BACKGROUND: Juglone is a phenolic bioactive compound with antimicrobial, antitumour, antioxidant, and anti-inflammatory characteristics. Given its anti-inflammatory and antioxidant effects, it was selected for evaluation in the inflammatory bowel diseases (IBD) model. OBJECTIVE: The current study was performed to evaluate the therapeutic impacts of the juglone in acetic acid-induced colitis in male Wistar rats. METHODS: Juglone was extracted from Pterocarya fraxinifolia via maceration method. Colitis was induced in 36 male Wistar rats (n = 6), except in the sham group, 1 ml of acetic acid 4% was administered intrarectally. Twenty-four hours after induction of colitis, in 3 groups, juglone was administered orally (gavage) at 3 doses of 50, 100, and 150 mg/kg for 2 successive days (once a day). Other groups included the control group (only treated with acetic acid), sham group (normal saline), and standard group (Dexamethasone). To evaluate the inflammation sites, macroscopic and microscopic markers were assessed. The mRNA expression of interleukin (IL)-1ß, and tumor necrosis factor-alpha (TNF)-α were assessed by real-time PCR, while myeloperoxidase (MPO) was measured spectrophotometrically. ELISA assay kits were used to determine the colonic levels of SOD, ROS, NF-κB, and TLR-4. RESULTS: Macroscopic and microscopic assessments revealed that juglone significantly decreased colonic tissue damage and inflammation at 150 mg/kg. Juglone at 100, 150 mg/kg significantly decreased the TNF-α, MPO, and TLR-4 levels, as well as the SOD activity. All juglone-treated groups reduced the NF-κB levels compared to the control group (p < 0.001). The compound decreased the IL-1ß, and ROS levels at the concentration of 150 mg/kg. Juglone attenuated colitis symptoms, reduced inflammation cytokines, declined neutrophil infiltration, and suppressed IL- 1ß and TNF-α expressions in acetic acid-induced colitis rats. It may be proposed that juglone improved colitis in animal model through suppression of inflammatory parameters and downregulation of the NF-κB-TLR-4 pathway. CONCLUSION: Juglone exhibited anti-inflammatory and antioxidant effects in the experimental colitis model and could be a therapeutic candidate for IBD. Juglone should be a subject for further animal and clinical trials in IBD models and for safety concerns.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Ratas Wistar , Ácido Acético/efectos adversos , Ácido Acético/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Colon/patología , Inflamación/tratamiento farmacológico , Superóxido Dismutasa
9.
Curr Med Chem ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817661

RESUMEN

The natural polyphenol, calebin-A, was recently discovered and identified as a novel phytopharmaceutical with anti-inflammatory, anti-tumor, and antiproliferative properties. Calebin-A occurs naturally in trace quantities in Curcuma longa/C cassia, commonly known as turmeric, from the Zingiberaceae family. Calebin-A is a curcumin analog or 'chemical cousin' of curcumin with a similar chemical structure. Although few research studies have been conducted on the pharmacological and therapeutic properties of calebin-A, it is a very promising molecule with a variety of pharmacological properties. Some studies have suggested that calebin-A is helpful in treating various cancers due to its inhibitory effect on cell growth and anti-inflammatory properties. Other studies have suggested that calebin-A may improve neurocognitive status associated with neurodegeneration caused by Alzheimer's disease (AD) by inhibiting the aggregation of ß-amyloid. Finally, several studies have proposed that calebin-A may potentially be therapeutically beneficial in treating patients with obesity. This novel compound downregulates nuclear factor (NF)-κB-mediated processes involved with cancer, such as tumor cell invasion, proliferation, metastasis, and, most profoundly, inflammation. Moreover, calebin-A influences the activities of mitogen-activated protein kinases (MAPKs) in cancer cells. The present review identifies and discusses the pharmacological and phytochemical properties of calebin-A, as well as its therapeutic benefits and limitations, for future scientists and clinicians interested in exploring calebin-A's medicinal qualities.

10.
Curr Med Chem ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37691218

RESUMEN

Turmerones are major bioactive compounds of Curcuma species with several beneficial pharmacological activities. In addition, various in vivo and in vitro studies noted that turmerones could affect different cytokines, metabolic pathways, and targets. Turmerones will have the potential to be a candidate agent to lessen many pathological and immunological conditions as a result of these pharmacological activities. In this review, we provided information about the pharmacological actions of turmerones using search engines such as PubMed, Google Scholar, Scopus, and Web of Science.

11.
Inflammopharmacology ; 31(5): 2201-2212, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37498375

RESUMEN

Curcumin (diferuloylmethane) is a herbal remedy which possesses numerous biological attributes including anti-inflammatory, anti-oxidant and anti-cancer properties. Curcumin has been shown to impact a number of signaling pathways including nuclear factor kappa B (NF-KB), reactive oxygen species (ROS), Wingless/Integrated (Wnt), Janus kinase-signal transducer and activator of mitogen-activated protein kinase (MAPK) and transcription (JAK/STAT). P38 belongs to the MAPKs, is known as a stress-activated MAPK and is involved in diverse biological responses. P38 is activated in various signaling cascades. P38 plays a role in inflammation, cell differentiation, proliferation, motility and survival. This cascade can serve as a therapeutic target in many disorders. Extensive evidence confirms that curcumin impacts the P38 MAPK signaling pathway, through which it exerts anti-inflammatory, neuroprotective, and apoptotic effects. Hence, curcumin can positively affect inflammatory disorders and cancers, as well as to increase glucose uptake in cells. This review discusses the pharmacological and therapeutic effects of curcumin as effected through p38 MAPK.


Asunto(s)
Curcumina , Curcumina/farmacología , Curcumina/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Quinasas Janus/metabolismo , Sistema de Señalización de MAP Quinasas
12.
Adv Exp Med Biol ; 1412: 457-476, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37378783

RESUMEN

The recent viral disease COVID-19 has attracted much attention. The disease is caused by SARS-CoV-19 virus which has different variants and mutations. The mortality rate of SARS-CoV-19 is high and efforts to establish proper therapeutic solutions are still ongoing. Inflammation plays a substantial part in the pathogenesis of this disease causing mainly lung tissue destruction and eventually death. Therefore, anti-inflammatory drugs or treatments that can inhibit inflammation are important options. Various inflammatory pathways such as nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLRs), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways and mediators, such as interleukin (IL)-6, IL-1ß, tumor necrosis factor-α (TNF-α), and interferon-γ (INF-γ), cause cell apoptosis, reduce respiratory capacity and oxygen supply, eventually inducing respiratory system failure and death. Statins are well known for controlling hypercholesterolemia and may serve to treat COVID-19 due to their pleiotropic effects among which are anti-inflammatory in nature. In this chapter, the anti-inflammatory effects of statins and their possible beneficial effects in COVID-19 treatment are discussed. Data were collected from experimental and clinical studies in English (1998-October 2022) from Google Scholar, PubMed, Scopus, and the Cochrane Library.


Asunto(s)
COVID-19 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Inflamación/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Interleucina-6
13.
Inflammation ; 46(5): 1709-1724, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37233919

RESUMEN

Licofelone is a dual Cyclooxygenase 1,2 (COX1,2)/5-lipoxygenase) 5-LOX (inhibitor with analgesic and anti-inflammatory effects with possible functions on inflammatory bowel disease (IBD), which is a chronic recurrent condition with no particular treatment. This study evaluated the anti-inflammatory effects of licofelone on acetic acid-induced colitis in rats. Ten groups of male Wistar rats (n = 6) were used. Sham, control group, licofelone at doses of 2.5, 5, and 10 mg/kg, L-NG-nitro arginine methyl ester (L-NAME) (10 mg/kg, i.p.), aminoguanidine (AG) (100 mg/kg, i.p.), 30 min before using licofelone (10 mg/kg). Also, three groups received L-NAME, aminoguanidine, or dexamethasone. Macroscopic, microscopic, and biochemical analysis of myeloperoxidase (MPO), and nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), superoxide dismutase (SOD), reactive oxygen species (ROS), and Toll-like receptor 4 (TLR-4) were assessed in colon tissue. Licofelone at a dose of 10 mg/kg attenuated colitis, increased SOD activity, and significantly reduced colonic levels of the abovementioned inflammatory factors. In addition, licofelone improved macroscopic and microscopic symptoms in the acetic acid-induced colitis model. Moreover, the concurrent use of nitric oxide synthase (NOS) inhibitors with 10 mg/kg of licofelone reversed the observed positive effects, demonstrating the function of nitric oxide in IBD pathogenesis and the probable mechanism for licofelone in the healing process of induced colitis. A reduced level of inflammatory factors confirmed the anti-inflammatory activity of licofelone as a dual COX1,2/5-LOX inhibitor. Furthermore, outcomes revealed the protective role of licofelone in treating experimental colitis. The findings are suggestive of the potential use of licofelone in IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Ratas , Masculino , Animales , Ácido Acético , Ratas Wistar , NG-Nitroarginina Metil Éster , Mediadores de Inflamación , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Superóxido Dismutasa , Colitis Ulcerosa/inducido químicamente
14.
Cytokine ; 166: 156206, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120946

RESUMEN

Inflammation and oxidative stress play pivotal roles in pathogenesis of many diseases including cancer, type 2 diabetes, cardiovascular disease, atherosclerosis, neurological diseases, and inflammatory diseases such as inflammatory bowel disease (IBD). Inflammatory mediators such as interleukins (ILs), interferons (INF-s), and tumor necrosis factor (TNF)-α are related to an extended chance of inflammatory diseases initiation or progression due to the over expression of the nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLR), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways. These pathways are completely interconnected. Theindoleamine 2,3 dioxygenase (IDO) subset of the kynurenine (KYN) (IDO/KYN), is a metabolic inflammatory pathway involved in production of nicotinamide adenine dinucleotide (NAD + ). It has been shown that IDO/KYN actively participates in inflammatory processes and can increase the secretion of cytokines that provoke inflammatory diseases. Data were extracted from clinical and animal studies published in English between 1990-April 2022, which were collected from PubMed, Google Scholar, Scopus, and Cochrane library. IDO/KYN is completely associated with inflammatory-related pathways, thus leading to the production of cytokines such as TNF-α, IL-1ß, and IL-6, and ultimately development and progression of various inflammatory disorders. Inhibition of the IDO/KYN pathway might be a novel therapeutic option for inflammatory diseases. Herein, we gathered data on probable interactions of the IDO/KYN pathway with induction of some inflammatory diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Quinurenina , Animales , Quinurenina/metabolismo , Triptófano/metabolismo , Inflamación , Citocinas , Factor de Necrosis Tumoral alfa , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Mamíferos/metabolismo
15.
Inflammopharmacology ; 31(1): 57-75, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36574095

RESUMEN

Inflammation plays a critical role in several diseases such as cancer, gastric, heart and nervous system diseases. Data suggest that the activation of mammalian target of rapamycin (mTOR) pathway in epithelial cells leads to inflammation. Statins, the inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), seem to be able to inhibit the mTOR. Statins are considered to have favorable effects on inflammatory diseases by reducing the complications caused by inflammation and by regulating the inflammatory process and cytokines secretion. This critical review collected data on this topic from clinical, in vivo and in vitro studies published between 1998 and June 2022 in English from databases including PubMed, Google Scholar, Scopus, and Cochrane libraries.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Neurodegenerativas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Serina-Treonina Quinasas TOR , Inflamación/tratamiento farmacológico , Sirolimus/uso terapéutico
16.
Biomed Res Int ; 2022: 7776092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203483

RESUMEN

The aim of the present study was to investigate the therapeutic potential of budesonide- (BDS-) loaded hyaluronic acid nanoparticles (HANPs) for treatment of inflammatory bowel disease (IBD) using an acute model of colitis in rats. The therapeutic efficacy of BDS-loaded HANPs in comparison with an aqueous suspension of the drug with the same dose (30 µg/kg) was investigated 48 h following induction of colitis by intrarectal administration of acetic acid 4% in rats. Microscopic and histopathologic examinations were conducted in inflamed colonic tissue. Tissue concentration of tumor necrosis factor (TNF)-α was assessed by ELISA assay kit, while the activity of myeloperoxidase (MPO) was measured spectrophotometrically. Results from in vivo evaluations demonstrated that administrations of BDS-HANPs ameliorated the general endoscopic appearance, quite close to the healthy animals with no signs of inflammation and reduced the cellular infiltration, as well as the TNF-α level, and the MPO activity. It was found that delivery by BDS-loaded HANPSs alleviated the induced colitis significantly better than the same dose of the free drug. These data further suggest the potential of HANPs as a targeted drug delivery system to the inflamed colon mucosa.


Asunto(s)
Colitis , Nanopartículas , Animales , Budesonida , Colitis/inducido químicamente , Colon/patología , Ácido Hialurónico/uso terapéutico , Mucosa Intestinal/patología , Peroxidasa , Ratas , Roedores , Factor de Necrosis Tumoral alfa
17.
Eur J Cancer Prev ; 31(6): 558-567, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35352698

RESUMEN

OBJECTIVE: Vaccination is proven to significantly reduce the risk of human papillomavirus (HPV)-related complications, especially cervical cancer. This study aimed to assess the immunogenicity and safety of the investigational bivalent HPV vaccine (16/18), named Papilloguard (Noyan Pajouhan Biopharma, Tehran, Iran), in comparison with the reference product (Cervarix, bivalent HPV vaccine (16/18) manufactured by GlaxoSmithKline, Rixensart, Belgium) in a three-dose regimen. METHODS: This trial was a randomized, controlled, double-blind, phase III study of two HPV vaccines in healthy female volunteers aged 15-25. The primary endpoint was to test the noninferiority of Papilloguard (Noyan Pajouhan Biopharma) to Cervarix (GlaxoSmithKline) as measured by the geometric mean titer (GMT) ratios of HPV-16 and HPV-18 7 months after the first vaccination. Secondary endpoints were the proportion of local and systemic solicited and unsolicited events, and the number of females with seroconversion against HPV-16 and HPV-18 7 months after the first vaccination. RESULTS: Out of 504 screened women, 218 were enrolled. Seven months after the first vaccination, GMT ratios of HPV-16 and HPV-18 were 0.59 and 0.93, respectively. The seroconversion rates of both Papilloguard (Noyan Pajouhan Biopharma) and Cervarix (GlaxoSmithKline) were more than 96%. Both vaccinated groups had a generally good profile of solicited and unsolicited adverse events (AEs). The most common AE was discomfort at the injection site, which was well tolerated. CONCLUSION: The result analysis of this study supports the noninferiority of Papilloguard (Noyan Pajouhan Biopharma) to Cervarix (GlaxoSmithKline) in terms of safety and immunogenicity based on the GMT ratio. However, long-term comparative studies to evaluate the sustainability of GMT response and risk of cervical intraepithelial neoplasia grades 2-3 are needed.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Hidróxido de Aluminio , Anticuerpos Antivirales , Femenino , Voluntarios Sanos , Humanos , Irán/epidemiología , Lípido A/análogos & derivados , Papillomaviridae , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/efectos adversos
18.
J Neuroimmunol ; 361: 577758, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34739911

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder in which inflammation and oxidative stress play key etiopathological role. The pathology of PD brain is characterized by inclusions of aggregated α-synuclein (α-SYN) in the cytoplasmic region of neurons. Clinical evidence suggests that stimulation of pro-inflammatory cytokines leads to neuroinflammation in the affected brain regions. Upon neuroinflammation, the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway, and other transcription factors such as nuclear factor κB (NF-κB), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), mammalian target of rapamycin (mTOR), and toll-like receptors (TLRs) are upregulated and induce the microglial activation, contributing to PD via dopaminergic neuron autophagy. Aberrant activation or phosphorylation of the components of JAK/STAT signaling pathway has been implicated in increased transcription of the inflammation-associated genes and many neurodegenerative disorders such as PD. Interferon gamma (IFN-γ), and interleukine (IL)-6 are two of the most potent activators of the JAK/STAT pathway, and it was shown to be elevated in PD. Stimulation of microglial cell with aggregated α-SYN results in production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and IL-1ß in PD. Dysregulation of the JAK/STAT in PD and its involvement in various inflammatory pathways make it a promising PD therapy approach. So far, a variety of synthetic or natural small-molecule JAK inhibitors (Jakinibs) have been found promising in managing a spectrum of ailments, many of which are in preclinical research or clinical trials. Herein, we provided a perspective on the function of the JAK/STAT signaling pathway in PD progression and gathered data that describe the rationale evidence on the potential application of Jakinibs to improve neuroinflammation in PD.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Quinasas Janus/fisiología , Enfermedad de Parkinson/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Factores de Transcripción STAT/fisiología , Transducción de Señal/fisiología , Animales , Antiparkinsonianos/farmacología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Ensayos Clínicos como Asunto , Citocinas/fisiología , Evaluación Preclínica de Medicamentos , Hormonas/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Masculino , Ratones , Terapia Molecular Dirigida , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Transducción de Señal/efectos de los fármacos
19.
Pharmaceutics ; 13(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34452154

RESUMEN

The phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of the rapamycin (mTOR)-signaling pathway has been suggested to have connections with the malignant transformation, growth, proliferation, and metastasis of various cancers and solid tumors. Relevant connections between the PI3K/Akt/mTOR pathway, cell survival, and prostate cancer (PC) provide a great therapeutic target for PC prevention or treatment. Recent studies have focused on small-molecule mTOR inhibitors or their usage in coordination with other therapeutics for PC treatment that are currently undergoing clinical testing. In this study, the function of the PI3K/Akt/mTOR pathway, the consequence of its dysregulation, and the development of mTOR inhibitors, either as an individual substance or in combination with other agents, and their clinical implications are discussed. The rationale for targeting the PI3K/Akt/mTOR pathway, and specifically the application and potential utility of natural agents involved in PC treatment is described. In addition to the small-molecule mTOR inhibitors, there are evidence that several natural agents are able to target the PI3K/Akt/mTOR pathway in prostatic neoplasms. These natural mTOR inhibitors can interfere with the PI3K/Akt/mTOR pathway through multiple mechanisms; however, inhibition of Akt and suppression of mTOR 1 activity are two major therapeutic approaches. Combination therapy improves the efficacy of these inhibitors to either suppress the PC progression or circumvent the resistance by cancer cells.

20.
Mol Biol Rep ; 48(1): 855-874, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33394234

RESUMEN

Inflammatory bowel diseases (IBD) belong to a subgroup of persistent, long-term, progressive, and relapsing inflammatory conditions. IBD may spontaneously develop in the colon, resulting in tumor lesions in inflamed regions of the intestine, such as invasive carcinoma. The benefit of opioids for IBD treatment is still questionable, thereby we investigated databases to provide an overview in this context. This review demonstrates the controversial role of opioids in IBD therapy, their physiological and pharmacological functions in attenuating the IBD symptoms, and in improving inflammatory, oxidative stress, and the quality of life factors in IBD subjects. Data were extracted from clinical, in vitro, and in vivo studies in English, between 1995 and 2019, from PubMed, Google Scholar, Scopus, and Cochrane library. Based on recent reports, there are promising opportunities to target the opioid system and control the IBD symptoms. This study suggests a novel approach for future treatment of functional and inflammatory disorders such as IBD.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Antiinflamatorios/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Enfermedad de Crohn/tratamiento farmacológico , Receptores Opioides/genética , Animales , Ensayos Clínicos como Asunto , Colitis Ulcerosa/genética , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Intestinos/efectos de los fármacos , Intestinos/inmunología , Ratones , Estrés Oxidativo/efectos de los fármacos , Calidad de Vida/psicología , Receptores Opioides/inmunología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA