Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617334

RESUMEN

CRISPR therapy for hematological disease has proven effective for transplant dependent beta thalassemia and sickle cell anemia, with additional disease targets in sight. The success of these therapies relies on high rates of CRISPR-induced double strand DNA breaks in hematopoietic stem and progenitor cells (HSPC). To achieve these levels, CRISPR complexes are typically delivered by electroporation ex vivo which is toxic to HSPCs. HSPCs are then cultured in stimulating conditions that promote error-prone DNA repair, requiring conditioning with chemotherapy to facilitate engraftment after reinfusion. In vivo delivery by nanocarriers of CRISPR gene editing tools has the potential to mitigate this complexity and toxicity and make this revolutionary therapy globally available. To achieve in vivo delivery, the inherent restriction factors against oligonucleotide delivery into HSPCs, that make ex vivo manipulation including electroporation and stimulation essential, must be overcome. To this end, our group developed a CRISPR carrying gold nanoparticle (CRISPR-AuNP) capable of delivering either Cas9 or Cas12a CRISPRs as ribonucleoprotein complexes (RNP) without compromising HSPC fitness. However, the most commonly used CRISPR, Cas9, demonstrated inconsistent activity in this delivery system, with lower activity relative to Cas12a. Investigation of Cas9 RNP biophysics relative to Cas12a revealed duplex RNA instability during the initial loading onto Au cores, resulting in undetectable Cas9 loading to the particle surface. Here we demonstrate preformation of RNP before loading, coupled with optimization of the loading chemistry and conditions, resulted in 39.6 ± 7.0 Cas9 RNP/AuNP without compromising RNP activity in both in vitro assays and primary human HSPC. The same alterations improved Cas12a RNP/AuNP loading 10-fold over previously reported levels. To achieve particle stability, the reported polyethyleneimine outer coating was altered to include PEGylation and the resulting 2nd generation CRISPR-AuNP demonstrates favorable nanoformulation characteristics for in vivo administration, with a hydrophilic, more neutral nanoparticle surface. Direct treatment of HSPC in vitro showed 72.5 ± 7.37% uptake of 2nd generation CRISPR-AuNP in primary human HSPC, but with endosomal accumulation and low rates of gene editing consistent with low levels of endosomal escape.

2.
Methods Mol Biol ; 2567: 39-62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36255694

RESUMEN

Genetic editing of hematopoietic stem and progenitor cells can be employed to understand gene-function relationships underlying hematopoietic cell biology, leading to new therapeutic approaches to treat disease. The ability to collect, purify, and manipulate primary cells outside the body permits testing of many different gene editing approaches. RNA-guided nucleases, such as CRISPR, have revolutionized gene editing based simply on Watson-Crick base-pairing, employed to direct activity to specific genomic loci. Given the ease and affordability of synthetic, custom RNA guides, testing of precision edits or large random pools in high-throughput screening studies is now widely available. With the ever-growing number of CRISPR nucleases being discovered or engineered, researchers now have a plethora of options for directed genomic change, including single base edits, nicks or double-stranded DNA cuts with blunt or staggered ends, as well as the ability to target CRISPR to other cellular oligonucleotides such as RNA or mitochondrial DNA. Except for single base editing strategies, precise rewriting of larger segments of the genetic code requires delivery of an additional component, templated DNA oligonucleotide(s) encoding the desired changes flanked by homologous sequences that permit recombination at or near the site of CRISPR activity. Altogether, the ever-growing CRISPR gene editing toolkit is an invaluable resource. This chapter outlines available technologies and the strategies for applying CRISPR-based editing in hematopoietic stem and progenitor cells.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Oligonucleótidos , Células Madre , ARN , ADN Mitocondrial
3.
Bone Marrow Transplant ; 58(2): 160-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36347999

RESUMEN

Chimeric Antigen Receptor (CAR) T cell therapy is an accepted standard of care for relapsed/refractory B cell malignancies. However, the high cost of existing industry-driven centralized production makes this therapy unaffordable in low and middle-income countries. Decentralized or point of care manufacturing has the potential to overcome some of these challenges. Here we demonstrate a decentralized manufacturing process for anti-CD19-CAR-T cells using a fully automated closed system (Miltenyi CliniMACS Prodigy®) is feasible in a developing country setting. Validation run data, as part of a pre-clinical trial safety evaluation, demonstrates the successful and robust manufacturing of anti-CD19 CAR-T cells with T cell expansion of 25 to 47-fold. The median transduction efficiency was 48.8%, with a median viability of 98% and fulfillment of all standard release criteria assays for clinical application. Evaluation of production costs in an academic, not for profit setting in India provide a benchmark for low and middle-income pricing which could greatly increase access to this therapy. Based on our analysis, the cost per product would be approximately $35,107 US dollars. Our data highlights the safety, efficacy, and reproducibility of the process for use in planned future clinical trials.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Humanos , Reproducibilidad de los Resultados , Linfocitos T , Costos y Análisis de Costo , Antígenos CD19
4.
Blood Adv ; 6(19): 5556-5569, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35849710

RESUMEN

We previously showed that intraosseous (IO) delivery of factor VIII (FVIII, gene F8) lentiviral vector (LV) driven by the megakaryocyte-specific promoter Gp1bα (G-F8-LV) partially corrected the bleeding phenotype in hemophilia A (HemA) mice for up to 5 months. In this study, we further characterized and confirmed the successful transduction of self-regenerating hematopoietic stem and progenitor cells (HSPCs) in treated mice. In addition, secondary transplant of HSPCs isolated from G-F8-LV-treated mice corrected the bleeding phenotype of the recipient HemA mice, indicating the potential of long-term transgene expression following IO-LV therapy. To facilitate the translation of this technology to human applications, we evaluated the safety and efficacy of this gene transfer therapy into human HSPCs. In vitro transduction of human HSPCs by the platelet-targeted G-F8-LV confirmed megakaryocyte-specific gene expression after preferential differentiation of HSPCs to megakaryocyte lineages. Lentiviral integration analysis detected a polyclonal integration pattern in G-F8-LV-transduced human cells, profiling the clinical safety of hemophilia treatment. Most importantly, IO delivery of G-F8-LV to humanized NBSGW mice produced persistent FVIII expression in human platelets after gene therapy, and the megakaryocytes differentiated from human CD34+ HSPCs isolated from LV-treated humanized mice showed up to 10.2% FVIII expression, indicating efficient transduction of self-regenerating human HSPCs. Collectively, these results indicate the long-term safety and efficacy of the IO-LV gene therapy strategy for HemA in a humanized model, adding further evidence to the feasibility of translating this method for clinical applications.


Asunto(s)
Hemofilia A , Hemostáticos , Animales , Humanos , Ratones , Plaquetas/metabolismo , Factor VIII/metabolismo , Terapia Genética/métodos , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/terapia
5.
Mol Ther Methods Clin Dev ; 20: 635-651, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33718514

RESUMEN

X-linked agammaglobulinemia (XLA) is an immune disorder caused by mutations in Bruton's tyrosine kinase (BTK). BTK is expressed in B and myeloid cells, and its deficiency results in a lack of mature B cells and protective antibodies. We previously reported a lentivirus (LV) BTK replacement therapy that restored B cell development and function in Btk and Tec double knockout mice (a phenocopy of human XLA). In this study, with the goal of optimizing both the level and lineage specificity of BTK expression, we generated LV incorporating the proximal human BTK promoter. Hematopoietic stem cells from Btk -/- Tec -/- mice transduced with this vector rescued lineage-specific expression and restored B cell function in Btk -/- Tec -/- recipients. Next, we tested addition of candidate enhancers and/or ubiquitous chromatin opening elements (UCOEs), as well as codon optimization to improve BTK expression. An Eµ enhancer improved B cell rescue, but increased immunoglobulin G (IgG) autoantibodies. Addition of the UCOE avoided autoantibody generation while improving B cell development and function and reducing vector silencing. An optimized vector containing a truncated UCOE upstream of the BTK promoter and codon-optimized BTK cDNA resulted in stable, lineage-regulated BTK expression that mirrored endogenous BTK, making it a strong candidate for XLA therapy.

6.
Mol Ther Methods Clin Dev ; 19: 438-446, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33294492

RESUMEN

Current approaches for hematopoietic stem cell gene therapy typically involve lentiviral gene transfer in tandem with a conditioning regimen to aid stem cell engraftment. Although many pseudotyped envelopes have the capacity to be immunogenic due to their viral origins, thus far immune responses against the most common envelope, vesicular stomatitis virus glycoprotein G (VSV-G), have not been reported in hematopoietic stem cell gene therapy trials. Herein, we report on two Fanconi anemia patients who underwent autologous transplantation of a lineage-depleted, gene-modified hematopoietic stem cell product without conditioning. We observed the induction of robust VSV-G-specific immunity, consistent with low/undetectable gene marking in both patients. Upon further interrogation, adaptive immune mechanisms directed against VSV-G were detected following transplantation in both patients, including increased VSV-G-specific T cell responses, anti-VSV-G immunoglobulin G (IgG), and cytotoxic responses that can specifically kill VSV-G-expressing target cell lines. A proportion of healthy controls also displayed preexisting VSV-G-specific CD4+ and CD8+ T cell responses, as well as VSV-G-specific IgG. Taken together, these data show that VSV-G-pseudotyped lentiviral vectors have the ability to elicit interfering adaptive immune responses in the context of certain hematopoietic stem cell transplantation settings.

7.
Mol Ther Methods Clin Dev ; 18: 679-691, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32802914

RESUMEN

Hematopoietic stem cell (HSC) gene therapy has the potential to cure many genetic, malignant, and infectious diseases. We have shown in a nonhuman primate gene therapy and transplantation model that the CD34+CD90+ cell fraction was exclusively responsible for multilineage engraftment and hematopoietic reconstitution. In this study, we show the translational potential of this HSC-enriched CD34 subset for lentivirus-mediated gene therapy. Alternative HSC enrichment strategies include the purification of CD133+ cells or CD38low/- subsets of CD34+ cells from human blood products. We directly compared these strategies to the isolation of CD90+ cells using a good manufacturing practice (GMP) grade flow-sorting protocol with clinical applicability. We show that CD90+ cell selection results in about 30-fold fewer target cells in comparison to CD133+ or CD38low/- CD34+ hematopoietic stem and progenitor cell (HSPC) subsets without compromising the engraftment potential in vivo. Single-cell RNA sequencing confirmed nearly complete depletion of lineage-committed progenitor cells in CD90+ fractions compared to alternative selections. Importantly, lentiviral transduction efficiency in purified CD90+ cells resulted in up to 3-fold higher levels of engrafted gene-modified blood cells. These studies should have important implications for the manufacturing of patient-specific HSC gene therapy and gene-engineered cell products.

8.
Mol Ther Methods Clin Dev ; 17: 796-809, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32355868

RESUMEN

In vivo tracking of retrovirus-tagged blood stem and progenitor cells is used to study hematopoiesis. Two techniques are used most frequently: sequencing the locus of retrovirus insertion, termed integration site analysis, or retrovirus DNA barcode sequencing. Of these, integration site analysis is currently the only available technique for monitoring clonal pools in patients treated with retrovirus-modified blood cells. A key question is how these two techniques compare in their ability to detect and quantify clonal contributions. In this study, we assessed both methods simultaneously in a clinically relevant nonhuman primate model of autologous, myeloablative transplantation. Our data demonstrate that both methods track abundant clones; however, DNA barcode sequencing is at least 5-fold more efficient than integration site analysis. Using computational simulation to identify the sources of low efficiency, we identify sampling depth as the major factor. We show that the sampling required for integration site analysis to achieve minimal coverage of the true clonal pool is likely prohibitive, especially in cases of low gene-modified cell engraftment. We also show that early subsampling of different blood cell lineages adds value to clone tracking information in terms of safety and hematopoietic biology. Our analysis demonstrates DNA barcode sequencing as a useful guide to maximize integration site analysis interpretation in gene therapy patients.

9.
Nat Commun ; 11(1): 219, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924795

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva , Inmunoterapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Selección Clonal Mediada por Antígenos/inmunología , Humanos , Cinética , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Análisis de Secuencia de ARN , Linfocitos T Citotóxicos/inmunología , Transcriptoma
10.
Sci Transl Med ; 11(503)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366580

RESUMEN

Reactivation of fetal hemoglobin (HbF) is being pursued as a treatment strategy for hemoglobinopathies. Here, we evaluated the therapeutic potential of hematopoietic stem and progenitor cells (HSPCs) edited with the CRISPR-Cas9 nuclease platform to recapitulate naturally occurring mutations identified in individuals who express increased amounts of HbF, a condition known as hereditary persistence of HbF. CRISPR-Cas9 treatment and transplantation of HSPCs purified on the basis of surface expression of the CD34 receptor in a nonhuman primate (NHP) autologous transplantation model resulted in up to 30% engraftment of gene-edited cells for >1 year. Edited cells effectively and stably reactivated HbF, as evidenced by up to 18% HbF-expressing erythrocytes in peripheral blood. Similar results were obtained by editing highly enriched stem cells, defined by the markers CD34+CD90+CD45RA-, allowing for a 10-fold reduction in the number of transplanted target cells, thus considerably reducing the need for editing reagents. The frequency of engrafted, gene-edited cells persisting in vivo using this approach may be sufficient to ameliorate the phenotype for a number of genetic diseases.


Asunto(s)
Sistemas CRISPR-Cas/genética , Hemoglobina Fetal/metabolismo , Células Madre Hematopoyéticas/citología , Animales , Antígenos CD34/metabolismo , Hemoglobina Fetal/genética , Edición Génica , Genotipo , Trasplante de Células Madre Hematopoyéticas , Humanos , Macaca mulatta , Primates , Antígenos Thy-1/metabolismo
11.
Blood ; 134(16): 1298-1311, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31416800

RESUMEN

Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/virología , Proteínas de la Membrana/efectos de los fármacos , Resveratrol/farmacología , Transducción Genética/métodos , Animales , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Vectores Genéticos , Xenoinjertos , Humanos , Lentivirus , Proteínas de la Membrana/metabolismo , Ratones , Transporte de Proteínas/efectos de los fármacos
12.
Stem Cell Reports ; 13(1): 91-104, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31204301

RESUMEN

Myeloid-differentiated hematopoietic stem cells (HSCs) have contributed to a number of novel treatment approaches for lysosomal storage diseases of the central nervous system (CNS), and may also be applied to patients infected with HIV. We quantified hematopoietic stem and progenitor cell (HSPC) trafficking to 20 tissues including lymph nodes, spleen, liver, gastrointestinal tract, CNS, and reproductive tissues. We observed efficient marking of multiple macrophage subsets, including CNS-associated myeloid cells, suggesting that HSPC-derived macrophages are a viable approach to target gene-modified cells to tissues. Gene-marked cells in the CNS were unique from gene-marked cells at any other physiological sites including peripheral blood. This novel finding suggests that these cells were derived from HSPCs, migrated to the brain, were compartmentalized, established myeloid progeny, and could be targeted for lifelong delivery of therapeutic molecules. Our findings have highly relevant implications for the development of novel therapies for genetic and infectious diseases of the CNS.


Asunto(s)
Sistema Nervioso Central/citología , Trasplante de Células Madre Hematopoyéticas , Células Mieloides/citología , Animales , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Terapia Genética/métodos , Células Madre Hematopoyéticas , Estudios Longitudinales , Enfermedades por Almacenamiento Lisosomal/patología , Enfermedades por Almacenamiento Lisosomal/terapia , Macaca nemestrina , Macrófagos/citología
13.
J Gene Med ; 20(10-11): e3050, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30129972

RESUMEN

BACKGROUND: Gene therapy approaches for the treatment of Fanconi anemia (FA) hold promise for patients without a suitably matched donor for an allogeneic bone marrow transplant. However, significant limitations include the collection of sufficient stem cell numbers from patients, the fragility of these cells during ex vivo manipulation, and clinically meaningful engraftment following transplantation. With these challenges in mind, we were interested in determining (i) whether gene-corrected cells at progressively lower numbers can successfully engraft in FA; (ii) whether low-dose conditioning facilitates this engraftment; and (iii) whether these cells can be selected for post-transplant. METHODS: Utilizing a well characterized mouse model of FA, we infused donor bone marrow from healthy heterozygote littermates that are unaffected carriers of the FANCA mutation to mimic a gene-corrected product, after administering low-dose conditioning. Once baseline engraftment was observed, we administered a second, very-low selective dose to determine whether gene-corrected cells could be selected for in vivo. RESULTS: We demonstrate that upfront low-dose conditioning greatly increases successful engraftment of hematopoietic corrected cells in a pre-clinical animal model of FA. Additionally, without conditioning, cells can still engraft and demonstrate a selective advantage in vivo over time following transplantation, and these corrected cells can be directly selected for in vivo after engraftment. CONCLUSIONS: Minimal conditioning prior to bone marrow transplant in Fanconi anemia promotes the multi-lineage engraftment of 10-fold fewer cells compared to nonconditioned controls. These data provide important insights into the potential of minimally toxic conditioning protocols for FA gene therapy applications.


Asunto(s)
Trasplante de Médula Ósea/métodos , Ciclofosfamida/administración & dosificación , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/terapia , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Animales , Recuento de Células , Relación Dosis-Respuesta a Droga , Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Vectores Genéticos/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunosupresores/administración & dosificación , Lentivirus/genética , Ratones Noqueados
14.
Mol Ther Methods Clin Dev ; 10: 156-164, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30101153

RESUMEN

Enhanced gene transfer efficiencies and higher yields of transplantable transduced human hematopoietic stem cells are continuing goals for improving clinical protocols that use stemcell-based gene therapies. Here, we examined the effect of the HSC agonist UM171 on these endpoints in both in vitro and in vivo systems. Using a 22-hr transduction protocol, we found that UM171 significantly enhances both the lentivirus-mediated transduction and yield of CD34+ and CD34+CD45RA- hematopoietic cells from human cord blood to give a 6-fold overall higher recovery of transduced hematopoietic stem cells, including cells with long-term lympho-myeloid repopulating activity in immunodeficient mice. The ability of UM171 to enhance gene transfer to primitive cord blood hematopoietic cells extended to multiple lentiviral pseudotypes, gamma retroviruses, and non-integrating lentiviruses and to adult bone marrow cells. UM171, thus, provides an interesting reagent for improving the ex vivo production of gene-modified cells and for reducing requirements of virus for a broad range of applications.

15.
Haematologica ; 103(11): 1806-1814, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29976742

RESUMEN

A hallmark of Fanconi anemia is accelerated decline in hematopoietic stem and progenitor cells (CD34 +) leading to bone marrow failure. Long-term treatment requires hematopoietic cell transplantation from an unaffected donor but is associated with potentially severe side-effects. Gene therapy to correct the genetic defect in the patient's own CD34+ cells has been limited by low CD34+ cell numbers and viability. Here we demonstrate an altered ratio of CD34Hi to CD34Lo cells in Fanconi patients relative to healthy donors, with exclusive in vitro repopulating ability in only CD34Hi cells, underscoring a need for novel strategies to preserve limited CD34+ cells. To address this need, we developed a clinical protocol to deplete lineage+(CD3+, CD14+, CD16+ and CD19+) cells from blood and marrow products. This process depletes >90% of lineage+cells while retaining ≥60% of the initial CD34+cell fraction, reduces total nucleated cells by 1-2 logs, and maintains transduction efficiency and cell viability following gene transfer. Importantly, transduced lineage- cell products engrafted equivalently to that of purified CD34+ cells from the same donor when xenotransplanted at matched CD34+ cell doses. This novel selection strategy has been approved by the regulatory agencies in a gene therapy study for Fanconi anemia patients (NCI Clinical Trial Reporting Program Registry ID NCI-2011-00202; clinicaltrials.gov identifier: 01331018).


Asunto(s)
Proteína del Grupo de Complementación A de la Anemia de Fanconi , Anemia de Fanconi , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Transducción Genética , Autoinjertos , Niño , Preescolar , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Anemia de Fanconi/terapia , Proteína del Grupo de Complementación A de la Anemia de Fanconi/biosíntesis , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Femenino , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Persona de Mediana Edad
16.
JCI Insight ; 3(13)2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29997284

RESUMEN

The genomic integration of HIV into cells results in long-term persistence of virally infected cell populations. This integration event acts as a heritable mark that can be tracked to monitor infected cells that persist over time. Previous reports have documented clonal expansion in people and have linked them to proto-oncogenes; however, their significance or contribution to the latent reservoir has remained unclear. Here, we demonstrate that a directed pattern of clonal expansion occurs in vivo, specifically in gene pathways important for viral replication and persistence. These biological processes include cellular division, transcriptional regulation, RNA processing, and posttranslational modification pathways. This indicates preferential expansion when integration events occur within genes or biological pathways beneficial for HIV replication and persistence. Additionally, these expansions occur quickly during unsuppressed viral replication in vivo, reinforcing the importance of early intervention for individuals to limit reservoir seeding of clonally expanded HIV-infected cells.


Asunto(s)
Genes Virales/genética , Infecciones por VIH/genética , VIH-1/genética , Integración Viral/genética , Replicación Viral/genética , Vacunas contra el SIDA , Animales , Linfocitos T CD4-Positivos , División Celular , Cromosomas Humanos/genética , Regulación Viral de la Expresión Génica , Genoma Viral , Infecciones por VIH/inmunología , VIH-1/patogenicidad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Masculino , Ratones Endogámicos NOD , Integración Viral/fisiología
17.
Blood Adv ; 2(9): 987-999, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29720491

RESUMEN

Hematopoietic stem-cell gene therapy is a promising treatment of X-linked severe combined immunodeficiency disease (SCID-X1), but currently, it requires recipient conditioning, extensive cell manipulation, and sophisticated facilities. With these limitations in mind, we explored a simpler therapeutic approach to SCID-X1 treatment by direct IV administration of foamy virus (FV) vectors in the canine model. FV vectors were used because they have a favorable integration site profile and are resistant to serum inactivation. Here, we show improved efficacy of our in vivo gene therapy platform by mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 before injection of an optimized FV vector incorporating the human phosphoglycerate kinase enhancerless promoter. G-CSF/AMD3100 mobilization before FV vector delivery accelerated kinetics of CD3+ lymphocyte recovery, promoted thymopoiesis, and increased immune clonal diversity. Gene-corrected T lymphocytes exhibited a normal CD4:CD8 ratio and a broad T-cell receptor repertoire and showed restored γC-dependent signaling function. Treated animals showed normal primary and secondary antibody responses to bacteriophage immunization and evidence for immunoglobulin class switching. These results demonstrate safety and efficacy of an accessible, portable, and translatable platform with no conditioning regimen for the treatment of SCID-X1 and other genetic diseases.


Asunto(s)
Enfermedades de los Perros , Terapia Genética , Vectores Genéticos/farmacología , Factor Estimulante de Colonias de Granulocitos/farmacología , Movilización de Célula Madre Hematopoyética , Compuestos Heterocíclicos/farmacología , Spumavirus , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X , Animales , Bencilaminas , Relación CD4-CD8 , Ciclamas , Modelos Animales de Enfermedad , Enfermedades de los Perros/sangre , Enfermedades de los Perros/genética , Enfermedades de los Perros/terapia , Perros , Humanos , Fosfoglicerato Quinasa/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/sangre , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/terapia , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/veterinaria
20.
Sci Transl Med ; 9(414)2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093179

RESUMEN

Hematopoietic reconstitution after bone marrow transplantation is thought to be driven by committed multipotent progenitor cells followed by long-term engrafting hematopoietic stem cells (HSCs). We observed a population of early-engrafting cells displaying HSC-like behavior, which persisted long-term in vivo in an autologous myeloablative transplant model in nonhuman primates. To identify this population, we characterized the phenotype and function of defined nonhuman primate hematopoietic stem and progenitor cell (HSPC) subsets and compared these to human HSPCs. We demonstrated that the CD34+CD45RA-CD90+ cell phenotype is highly enriched for HSCs. This population fully supported rapid short-term recovery and robust multilineage hematopoiesis in the nonhuman primate transplant model and quantitatively predicted transplant success and time to neutrophil and platelet recovery. Application of this cell population has potential in the setting of HSC transplantation and gene therapy/editing approaches.


Asunto(s)
Linaje de la Célula , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Animales , Antígenos CD/metabolismo , Plaquetas/citología , Células Clonales , Humanos , Macaca nemestrina , Neutrófilos/citología , Fenotipo , Transcriptoma/genética , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA