Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Neuropharmacology ; 218: 109233, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007855

RESUMEN

Chemotherapy-induced neuropathic pain (CINP) is a debilitating and difficult-to-treat side effect of chemotherapeutic drugs. CINP is marked with oxidative stress and neuronal hypersensitivities. The peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates genes involved in oxidative stress and inflammation. We hypothesize that PPARγ agonists are protective against CIPN by reducing oxidative stress and inhibiting neuronal hypersensitivities. To test our hypothesis, acute or chronic CIPN was introduced by short or long-term treatment of oxaliplatin in BALB/c mice. CIPN mice were treated with either a novel blood-brain barrier (BBB) penetrable PPARγ agonist ELB00824, or a BBB non-penetrable PPARγ agonist pioglitazone, or vehicle. Cold allodynia, mechanical allodynia, motor coordination, sedation and addiction were measured with dry ice, von Frey filaments, beam-walking tests, and conditioned place preference, respectively. Oxidative stress was accessed by measuring byproducts of protein oxidation (carbonyl and 3-Nitrotyrosine) and lipid peroxidation [Thiobarbituric acid reactive substances (TBARS)], as wells as gene expression of Cat, Sod2, Ppargc1a. The effects of ELB00824 on nociceptor excitability were measured using whole-cell electrophysiology of isolated dorsal root ganglion neurons. Preemptive ELB00824, but not pioglitazone, reduced oxaliplatin-induced cold and mechanical allodynia and oxidative stress. ELB0824 suppressed oxaliplatin-induced firing in IB4- neurons. ELB00824 did not cause motor discoordination or sedation/addiction or reduce the antineoplastic activity of oxaliplatin (measured with an MTS-based cell proliferation assay) in a human colon cancer cell line (HCT116) and a human oral cancer cell line (HSC-3). Our results demonstrated that ELB00824 prevents oxaliplatin-induced pain, likely via inhibiting neuronal hypersensitivities and oxidative stress.


Asunto(s)
Antineoplásicos , Hipersensibilidad , Neuralgia , Animales , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/prevención & control , Hipersensibilidad/tratamiento farmacológico , Ratones , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Neuronas/metabolismo , Oxaliplatino , Estrés Oxidativo , PPAR gamma/metabolismo
2.
Nat Commun ; 13(1): 2791, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589755

RESUMEN

Tumour cell plasticity is a major barrier to the efficacy of targeted cancer therapies but the mechanisms that mediate it are poorly understood. Here, we identify dysregulated RNA splicing as a key driver of tumour cell dedifferentiation in colorectal cancer (CRC). We find that Apc-deficient CRC cells have dysregulated RNA splicing machinery and exhibit global rewiring of RNA splicing. We show that the splicing factor SRSF1 controls the plasticity of tumour cells by controlling Kras splicing and is required for CRC invasion in a mouse model of carcinogenesis. SRSF1 expression maintains stemness in human CRC organoids and correlates with cancer stem cell marker expression in human tumours. Crucially, partial genetic downregulation of Srsf1 does not detrimentally affect normal tissue homeostasis, demonstrating that tumour cell plasticity can be differentially targeted. Thus, our findings link dysregulation of the RNA splicing machinery and control of tumour cell plasticity.


Asunto(s)
Plasticidad de la Célula , Neoplasias Colorrectales , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Plasticidad de la Célula/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Ratones , Empalme del ARN/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
3.
J Virol Methods ; 300: 114417, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34902457

RESUMEN

Roses are one of the most valuable ornamental flowering shrubs grown worldwide. Despite the widespread of rose viruses and their impact on cultivation, they have not been studied in detail in the United Kingdom (UK) since the 1980's. As part of a survey of rose viruses entering the UK, 35 samples were collected at Heathrow Airport (London, UK) and were tested by RT-qPCR for different common rose viruses. Of the 35 samples tested using RT-qPCR for prunus necrotic ringspot virus (PNRSV; genus Ilarvirus), 10 were positive. Confirmatory testing was performed using RT-PCR with both PNRSV-specific and ilarvirus-generic primers, and diverse results were obtained: One sample was exclusively positive when using the ilarvirus-generic primers, and subsequent sequencing of the RT-PCR product revealed homology to other ilarviruses but not PNRSV. Further work to characterise the virus was performed using high throughput sequencing, both the MinION Flongle and Illumina MiSeq. The sequencing confirmed the presence of a new virus within group 2 of the genus Ilarvirus and we propose the name "rosa ilarvirus-1″ (RIV-1). Here, we describe the identification of a novel virus using the low-cost Flongle flow cell and discuss its potential as a front-line diagnostic tool.


Asunto(s)
Ilarvirus , Rosa , Virus ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ilarvirus/genética , ARN Viral/genética
4.
Plant Dis ; 105(11): 3600-3609, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34080887

RESUMEN

Potato virus Y (PVY) disrupts healthy seed potato production and causes tuber yield and quality losses globally. Its subdivisions consist of strain groups defined by potato hypersensitive resistance (HR) genes and whether necrosis occurs in tobacco, and phylogroups defined by sequencing. When PVY isolate PP was inoculated to potato cultivar differentials with HR genes, the HR phenotype pattern obtained resembled that caused by strain group PVYD isolate KIP1. A complete genome of isolate PP was obtained by high-throughput sequencing. After removal of its short terminal recombinant segment, it was subjected to phylogenetic analysis together with 30 complete nonrecombinant PVY genomes. It fitted within the same minor phylogroup PVYO3 subclade as KIP1. Putative HR gene Nd was proposed previously to explain the unique HR phenotype pattern that developed when differential cultivars were inoculated with PVYD. However, an alternative explanation was that PVYD elicits HR with HR genes Nc and Ny instead. To establish which gene(s) it elicits, isolates KIP1 and PP were inoculated to F1 potato seedlings from (i) crossing 'Kipfler' and 'White Rose' with 'Ruby Lou' and (ii) self-pollinated 'Desiree' and 'Ruby Lou', where 'Kipfler' is susceptible (S) but 'White Rose', 'Desiree', and 'Ruby Lou' develop HR. With both isolates, the HR:S segregation ratios obtained fitted 5:1 for 'Kipfler' × 'Ruby Lou', 11:1 for 'White Rose' × 'Ruby Lou', and 3:1 for 'Desiree'. Those for 'Ruby Lou' were 68:1 (isolate PP) and 52:0 (isolate KIP1). Because potato is tetraploid, these ratios suggest PVYD elicits HR with Ny from 'Ruby Lou' (duplex condition) and 'Desiree' (simplex condition) and Nc from 'White Rose' (simplex condition) but provide no evidence that Nd exists. Therefore, our differential cultivar inoculations and inheritance studies highlight that PVYD isolates elicit an HR phenotype in potato cultivars with either of two HR genes Nc or Ny, so putative gene Nd can be discounted. Moreover, phylogenetic analysis placed isolate PP within the same minor phylogroup PVYO3 subclade as KIP1, which constitutes the most basal divergence within overall major phylogroup PVYO.


Asunto(s)
Potyvirus , Solanum tuberosum , Filogenia , Enfermedades de las Plantas , Potyvirus/genética , Nicotiana
5.
Dev Cell ; 56(1): 22-35.e7, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33278343

RESUMEN

Retrotransposon proliferation poses a threat to germline integrity. While retrotransposons must be activated in developing germ cells in order to survive and propagate, how they are selectively activated in the context of meiosis is unclear. We demonstrate that the transcriptional activation of Ty3/Gypsy retrotransposons and host defense are controlled by master meiotic regulators. We show that budding yeast Ty3/Gypsy co-opts binding sites of the essential meiotic transcription factor Ndt80 upstream of the integration site, thereby tightly linking its transcriptional activation to meiotic progression. We also elucidate how yeast cells thwart Ty3/Gypsy proliferation by blocking translation of the retrotransposon mRNA using amyloid-like assemblies of the RNA-binding protein Rim4. In mammals, several inactive Ty3/Gypsy elements are undergoing domestication. We show that mammals utilize equivalent master meiotic regulators (Stra8, Mybl1, Dazl) to regulate Ty3/Gypsy-derived genes in developing gametes. Our findings inform how genes that are evolving from retrotransposons can build upon existing regulatory networks during domestication.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Germinativas/metabolismo , Meiosis/genética , Proteínas de Unión al ARN/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sitios de Unión , Secuenciación de Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Meiosis/fisiología , Ratones , Zarigüeyas/genética , Zarigüeyas/metabolismo , Biosíntesis de Proteínas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/genética , ADN Polimerasa Dirigida por ARN/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
6.
Arch Virol ; 165(12): 2967-2971, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32886214

RESUMEN

This study reports the first complete genome sequence of nerine yellow stripe virus (NeYSV, GenBank MT396083). The genome consists of 10,165 nucleotides, excluding the 3'-terminal poly(A) tail. A single open reading frame encodes a large polyprotein of 3294 amino acids with typical potyvirus features. The nuclear inclusion b and coat protein region shares 95% identity with a previously reported partial NeYSV sequence (NC_043153.1). Phylogenetic analysis of the polyprotein amino acid sequence showed that NeYSV clustered with hippeastrum mosaic virus (HiMV YP_006382256.1).


Asunto(s)
Genoma Viral , Filogenia , Potyvirus/clasificación , Secuencia de Aminoácidos , Flores/virología , Genómica , Sistemas de Lectura Abierta , Enfermedades de las Plantas/virología , Potyvirus/aislamiento & purificación , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
7.
Virus Res ; 282: 197944, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222379

RESUMEN

Potato yellowing virus (PYV, original code SB-22), an unassigned member of the Genus Ilarvirus Family Bromoviridae, has been reported infecting potatoes in Peru, Ecuador and Chile. It is associated with symptomless infections, however yellowing of young leaves has been observed in some potato cultivars. Thirteen potato and yacon isolates were selected after routine screening of CIP-germplasm and twenty-four were identified from 994 potato plants collected in Peru whereas one was intercepted from yacon in the UK. These isolates were identified using high throughput sequencing, ELISA, host range and RT-PCR. Here we report the sequence characterization of the complete genomes of nine PYV isolates found infecting Solanum tuberosum, four complete genome isolates infecting Smallanthus sonchifolius (yacon), and in addition 15 complete RNA3 sequences from potato and partial sequences of RNA1, 2 and 3 of isolates infecting potato and yacon from Ecuador, Peru and Bolivia. Results of phylogenetic and recombination analysis showed RNA3 to be the most variable among the virus isolates and suggest potato infecting isolates have resulted through acquisition of a movement protein variant through recombination with an unknown but related ilarvirus, whereas one yacon isolate from Bolivia also had resulted from a recombination event with another related viruses in the same region. Yacon isolates could be distinguished from potato isolates by their inability to infect Physalis floridana, and potato isolates from Ecuador and Peru could be distinguished by their symptomatology in this host as well as phylogenetically. The non-recombinant yacon isolates were closely related to a recently described isolate from Solanum muricatum (pepino dulce), and all isolates were related to Fragaria chiloensis latent virus (FCiLV) reported in strawberry from Chile, and probably should be considered the same species. Although PYV is not serologically related to Alfalfa mosaic virus (AMV), they are both transmitted by aphids and share several other characteristics that support the previous suggestion to reclassify AMV as a member in the genus Ilarvirus.


Asunto(s)
Áfidos/virología , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad del Huésped , Ilarvirus/genética , Enfermedades de las Plantas/virología , Animales , Ilarvirus/clasificación , Ilarvirus/aislamiento & purificación , Filogenia , Hojas de la Planta/virología , Recombinación Genética , Solanum tuberosum/virología , América del Sur , Reino Unido
8.
Plant Dis ; 103(7): 1746-1756, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31082318

RESUMEN

In 1976, a virus with flexuous, filamentous virions typical of the family Potyviridae was isolated from symptomatic pepino (Solanum muricatum) plants growing in two valleys in Peru's coastal desert region. In 2014, a virus with similar-shaped virions was isolated from asymptomatic fruits obtained from pepino plants growing in six coastal valleys and a valley in Peru's Andean highlands. Both were identified subsequently as Wild potato mosaic virus (WPMV) by serology or high-throughput sequencing (HTS). The symptoms caused by two old and seven new isolates from pepino were examined in indicator plants. Infected solanaceous hosts varied considerably in their sensitivities to infection and individual isolates varied greatly in virulence. All seven new isolates caused quick death of infected Nicotiana benthamiana plants and more than half of them killed infected plants of Physalis floridana and S. chancayense. These three species were the most sensitive to infection. The most virulent isolate was found to be BA because it killed five of eight solanaceous host species whereas CA was the least severe because it only killed N. benthamiana. Using HTS, complete genomic sequences of six isolates were obtained, with one isolate (FE) showing evidence of recombination. The distances between individual WPMV isolates in phylogenetic trees and the geographical distances between their collection sites were found to be unrelated. The individual WPMV isolates displayed nucleotide sequence identities of 80.9-99.8%, whereas the most closely related virus, Potato virus V (PVV), was around 75% identical to WPMV. WPMV, PVV, and Peru tomato virus formed clusters of similar phylogenetic diversity, and were found to be distinct but related viruses within the overall Potato virus Y lineage. WPMV infection seems widespread and of likely economic significance to pepino producers in Peru's coastal valleys. Because it constitutes the fifth virus found infecting pepino and this crop is entirely vegetatively propagated, development of healthy pepino stock programs is advocated.


Asunto(s)
Genoma Viral , Potyvirus , Solanum , Genoma Viral/genética , Perú , Filogenia , Potyvirus/clasificación , Potyvirus/genética , Solanum/microbiología , Especificidad de la Especie
9.
J Am Med Dir Assoc ; 19(1): 59-64.e1, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899660

RESUMEN

BACKGROUND: Co-prescribing of scheduled drugs is endemic in the United Sates, increasing health risks to patients and the burden on healthcare systems. PURPOSE: We conducted a pragmatic historical cohort study to measure the effect of enrollment in a state-authorized United States' Medical Cannabis Program (MCP) on scheduled II-V drug prescription patterns. PROCEDURES: Eighty-three chronic pain patients, who enrolled in the New Mexico MCP between April 1, 2010 and October 3, 2015, were compared with 42 nonenrolled patients over a 24-month period (starting 6 months before enrollment for the MCP patients) using the Prescription Monitoring Program. The outcome variables include baseline levels and pre- and postenrollment monthly trends in the number of drug prescriptions, distinct drug classes, dates prescription drugs were filled, and prescribing providers. FINDINGS: Twenty-eight MCP patients (34%) and 1 comparison group patient (2%) ceased the use of all scheduled prescription medications by the last 6 months of the observation period. Age- and sex-adjusted regressions show that, although no statistically significant differences existed in pre-enrollment levels and trends, the postenrollment trend among MCP patients is statistically significantly negative for all 4 measures (decreases in counts of -0.02 to -0.04, P values between <.001 and .017), whereas the postenrollment trend is 0 among the comparison group. Controlling for time-invariant patient characteristics suggested that MCP patients showed statistically significantly lower levels across all 4 measures by 10 months postenrollment. CONCLUSIONS: Legal access to cannabis may reduce the use of multiple classes of dangerous prescription medications in certain patient populations.


Asunto(s)
Utilización de Medicamentos/legislación & jurisprudencia , Utilización de Medicamentos/estadística & datos numéricos , Fumar Marihuana/epidemiología , Marihuana Medicinal/administración & dosificación , Dolor Intratable/tratamiento farmacológico , Pautas de la Práctica en Medicina/legislación & jurisprudencia , Adulto , Anciano , Dolor Crónico/diagnóstico , Dolor Crónico/tratamiento farmacológico , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Fumar Marihuana/legislación & jurisprudencia , Persona de Mediana Edad , New Mexico , Medicamentos bajo Prescripción/administración & dosificación , Medición de Riesgo
10.
J Cell Biol ; 216(4): 999-1013, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28246120

RESUMEN

Cilia assembly and disassembly are coupled to actin dynamics, ensuring a coherent cellular response during environmental change. How these processes are integrated remains undefined. The histone lysine demethylase KDM3A plays important roles in organismal homeostasis. Loss-of-function mouse models of Kdm3a phenocopy features associated with human ciliopathies, whereas human somatic mutations correlate with poor cancer prognosis. We demonstrate that absence of KDM3A facilitates ciliogenesis, but these resulting cilia have an abnormally wide range of axonemal lengths, delaying disassembly and accumulating intraflagellar transport (IFT) proteins. KDM3A plays a dual role by regulating actin gene expression and binding to the actin cytoskeleton, creating a responsive "actin gate" that involves ARP2/3 activity and IFT. Promoting actin filament formation rescues KDM3A mutant ciliary defects. Conversely, the simultaneous depolymerization of actin networks and IFT overexpression mimics the abnormal ciliary traits of KDM3A mutants. KDM3A is thus a negative regulator of ciliogenesis required for the controlled recruitment of IFT proteins into cilia through the modulation of actin dynamics.


Asunto(s)
Actinas/metabolismo , Transporte Biológico/fisiología , Cilios/fisiología , Flagelos/fisiología , Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Animales , Línea Celular , Cilios/metabolismo , Flagelos/metabolismo , Expresión Génica/fisiología , Humanos , Ratones , Morfogénesis/fisiología , Mutación/fisiología , Fenotipo
11.
BMC Cancer ; 16(1): 482, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27510889

RESUMEN

BACKGROUND: As with many anti-cancer drugs, the topoisomerase II inhibitor etoposide is considered safe for administration to women in the second and third trimesters of pregnancy, but assessment of effects on the developing fetus have been limited. The purpose of this research was to examine the effect of etoposide on germ cells in the developing ovary. Mouse ovary tissue culture was used as the experimental model, thus allowing us to examine effects of etoposide on all stages of germ cell development in the same way, in vitro. RESULTS: Fetal ovaries from embryonic day 13.5 CD1 mice or neonatal ovaries from postnatal day 0 CD1 mice were cultured with 50-150 ng ml(-1) or 50-200 ng ml(-1) etoposide respectively, concentrations that are low relative to that in patient serum. When fetal ovaries were treated prior to follicle formation, etoposide resulted in dose-dependent damage, with 150 ng ml(-1) inducing a near-complete absence of healthy follicles. In contrast, treatment of neonatal ovaries, after follicle formation, had no effect on follicle numbers and only a minor effect on follicle health, even at 200 ng ml(-1). The sensitivity of female germ cells to etoposide coincided with topoisomerase IIα expression: in the developing ovary of both mouse and human, topoisomerase IIα was expressed in germ cells only prior to follicle formation. CONCLUSIONS: Exposure of pre-follicular ovaries, in which topoisomerase IIα expression was germ cell-specific, resulted in a near-complete elimination of germ cells prior to follicle formation, with the remaining germ cells going on to form unhealthy follicles by the end of culture. In contrast, exposure to follicle-enclosed oocytes, which no longer expressed topoisomerase IIα in the germ cells, had no effect on total follicle numbers or health, the only effect seen specific to transitional follicles. Results indicate the potential for adverse effects on fetal ovarian development if etoposide is administered to pregnant women when germ cells are not yet enclosed within ovarian follicles, a process that starts at approximately 17 weeks gestation and is only complete towards the end of pregnancy.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Diferenciación Celular/efectos de los fármacos , Etopósido/toxicidad , Células Germinativas/patología , Oocitos/patología , Folículo Ovárico/patología , Ovario/patología , Animales , Células Cultivadas , Femenino , Células Germinativas/efectos de los fármacos , Ratones , Oocitos/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Ovario/efectos de los fármacos
12.
Arch Virol ; 161(6): 1601-10, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27016929

RESUMEN

Potato is the fourth most important crop worldwide that is used as a staple food, after rice, wheat and maize. The crop can be affected by a large number of pathogens, including fungi, oomycetes, bacteria and viruses. Diseases caused by viruses are among the most important factors contributing to reduced quality and yield of the crop. Potato mop-top virus (genus Pomovirus) induces necrotic flecks in the tuber flesh and skin of potato in temperate countries. Spongospora subterranea is the vector of PMTV. Both the virus and its vector cause disease in potato. In Colombia, PMTV has been detected throughout the country together with a novel pomo-like virus in the centre (Cundinamarca and Boyacá) and south west (Nariño) of the country. We studied the molecular and biological characteristics of this novel virus. Its genome resembles those of members of the genus Pomovirus, and it is closely related to PMTV. It induces mild systemic symptoms in Nicotiana benthamiana (mosaic, branch curling), but no symptoms in N. tabacum, N. debneyi and Chenopodium amaranticolor. The proposed name for the virus is "Colombian potato soil-borne virus" (CPSbV). Additionally, another pomo-like virus was identified in Nariño. This virus induces severe systemic stem declining and mild mosaic in N. benthamiana. The tentative name "soil-borne virus 2" (SbV2) is proposed for this virus. No vectors have been identified for these viruses despite several attempts. This work focused on the characterisation of CPSbV. The risk posed by these viruses if they are introduced into new territories is discussed.


Asunto(s)
Enfermedades de las Plantas/virología , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Solanum tuberosum/virología , Animales , Colombia , Vectores de Enfermedades , Conformación de Ácido Nucleico , Filogenia , Enfermedades de las Plantas/parasitología , Virus de Plantas/clasificación , Plasmodiophorida/virología , ARN Viral/química , ARN Viral/genética , Solanum tuberosum/parasitología , Nicotiana/virología
13.
Cell Rep ; 9(4): 1482-94, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25456137

RESUMEN

The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform.


Asunto(s)
Adenosina Desaminasa/metabolismo , Inmunidad Innata , Edición de ARN , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adenosina Desaminasa/genética , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Cruzamientos Genéticos , Citocinas/metabolismo , Pérdida del Embrión/patología , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Inosina/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Fenotipo , Proteínas de Unión al ARN/genética , Receptores de Interferón/metabolismo , Análisis de Supervivencia , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Uracilo/metabolismo
14.
Plant Biotechnol J ; 12(5): 613-23, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24506492

RESUMEN

We used expressed sequence tag library and whole genome sequence mining to identify a suite of putative desaturase genes representing the four main activities required for production of polyunsaturated fatty acids in hemp seed oil. Phylogenetic-based classification and developing seed transcriptome analysis informed selection for further analysis of one of seven Δ12 desaturases and one of three Δ15 desaturases that we designate CSFAD2A and CSFAD3A, respectively. Heterologous expression of corresponding cDNAs in Saccharomyces cerevisiae showed CSFAD2A to have Δx+3 activity, while CSFAD3A activity was exclusively at the Δ15 position. TILLING of an ethyl methane sulphonate mutagenized population identified multiple alleles including non-sense mutations in both genes and fatty acid composition of seed oil confirmed these to be the major Δ12 and Δ15 desaturases in developing hemp seed. Following four backcrosses and sibling crosses to achieve homozygosity, csfad2a-1 was grown in the field and found to produce a 70 molar per cent high oleic acid (18:1(Δ9) ) oil at yields similar to wild type. Cold-pressed high oleic oil produced fewer volatiles and had a sevenfold increase in shelf life compared to wild type. Two low abundance octadecadienoic acids, 18:2(Δ6,9) and 18:2(Δ9,15), were identified in the high oleic oil, and their presence suggests remaining endogenous desaturase activities utilize the increased levels of oleic acid as substrate. Consistent with this, CSFAD3A produces 18:2(Δ9,15) from endogenous 18:1(Δ9) when expressed in S. cerevisiae. This work lays the foundation for the development of additional novel oil varieties in this multipurpose low input crop.


Asunto(s)
Cannabis/enzimología , Cannabis/genética , Marcación de Gen , Mutación/genética , Ácido Oléico/metabolismo , Aceites de Plantas/metabolismo , Semillas/genética , Membrana Celular/enzimología , Frío , Minería de Datos , Evolución Molecular , Ácido Graso Desaturasas/genética , Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Microsomas/enzimología , Semillas/metabolismo , Solubilidad , Transcriptoma/genética
15.
Mol Cell ; 49(5): 858-71, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23333305

RESUMEN

The appropriate execution of DNA double-strand break (DSB) repair is critical for genome stability and tumor avoidance. 53BP1 and BRCA1 directly influence DSB repair pathway choice by regulating 5' end resection, but how this is achieved remains uncertain. Here we report that Rif1(-/-) mice are severely compromised for 53BP1-dependent class switch recombination (CSR) and fusion of dysfunctional telomeres. The inappropriate accumulation of RIF1 at DSBs in S phase is antagonized by BRCA1, and deletion of Rif1 suppresses toxic nonhomologous end joining (NHEJ) induced by PARP inhibition in Brca1-deficient cells. Mechanistically, RIF1 is recruited to DSBs via the N-terminal phospho-SQ/TQ domain of 53BP1, and DSBs generated by ionizing radiation or during CSR are hyperresected in the absence of RIF1. Thus, RIF1 and 53BP1 cooperate to block DSB resection to promote NHEJ in G1, which is antagonized by BRCA1 in S phase to ensure a switch of DSB repair mode to homologous recombination.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , ADN/metabolismo , Proteínas de Unión a Telómeros/genética , Animales , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Ratones , Recombinación Genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Transfección , Proteína 1 de Unión al Supresor Tumoral P53
16.
J Neurosci ; 32(40): 13860-72, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23035095

RESUMEN

Excitatory-inhibitory imbalance has been identified within specific brain microcircuits in models of Rett syndrome (RTT) and other autism spectrum disorders (ASDs). However, macrocircuit dysfunction across the RTT brain as a whole has not been defined. To approach this issue, we mapped expression of the activity-dependent, immediate-early gene product Fos in the brains of wild-type (Wt) and methyl-CpG-binding protein 2 (Mecp2)-null (Null) mice, a model of RTT, before and after the appearance of overt symptoms (3 and 6 weeks of age, respectively). At 6 weeks, Null mice exhibit significantly less Fos labeling than Wt in limbic cortices and subcortical structures, including key nodes in the default mode network. In contrast, Null mice exhibit significantly more Fos labeling than Wt in the hindbrain, most notably in cardiorespiratory regions of the nucleus tractus solitarius (nTS). Using nTS as a model, whole-cell recordings demonstrated that increased Fos expression in Nulls at 6 weeks of age is associated with synaptic hyperexcitability, including increased frequency of spontaneous and miniature EPSCs and increased amplitude of evoked EPSCs in Nulls. No such effect of genotype on Fos or synaptic function was seen at 3 weeks. In the mutant forebrain, reduced Fos expression, as well as abnormal sensorimotor function, were reversed by the NMDA receptor antagonist ketamine. In light of recent findings that the default mode network is hypoactive in autism, our data raise the possibility that hypofunction within this meta-circuit is a shared feature of RTT and other ASDs and is reversible.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Proteína 2 de Unión a Metil-CpG/fisiología , Red Nerviosa/fisiopatología , Prosencéfalo/fisiopatología , Núcleo Solitario/fisiopatología , Animales , Cerebelo/metabolismo , Cerebelo/fisiopatología , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes fos , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Especificidad de Órganos , Técnicas de Placa-Clamp , Prosencéfalo/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología , Filtrado Sensorial/efectos de los fármacos , Filtrado Sensorial/fisiología , Núcleo Solitario/química , Núcleo Solitario/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
17.
PLoS One ; 6(9): e25061, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21949850

RESUMEN

The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors. In addition, p97 plays a central role in degradation of misfolded secretory proteins via the ER-associated degradation pathway. This functional diversity of p97 depends on its association with various cofactors, and to further our understanding of p97 function it is important that these cofactors are identified and analyzed. Here, we isolate and characterize the human protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8 is a transmembrane protein that localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ER-derived proteasome substrates. Thus, Rep8 tethers p97 to the ER membrane for efficient ER-associated degradation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Melanoma/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatasas/genética , Western Blotting , Proteínas de Ciclo Celular/genética , Citoplasma/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Eritrocitos/metabolismo , Humanos , Inmunoprecipitación , Hibridación in Situ , Melanoma/genética , Unión Proteica , Pliegue de Proteína , Proteínas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Tumorales Cultivadas , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina
19.
Mol Hum Reprod ; 15(4): 205-13, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19218284

RESUMEN

One of the major decisions that germ cells make during their development is whether to differentiate into oocytes or sperm. In mice, the germ cells' decision to develop as male or female depends on sex-determining signalling molecules in the embryonic gonadal environment rather than the sex chromosome constitution of the germ cells themselves. In response to these sex-determining cues, germ cells in female embryos initiate oogenesis and enter meiosis, whereas germ cells in male embryos initiate spermatogenesis and inhibit meiosis until after birth. However, it is not clear whether the signalling molecules that mediate germ cell sex determination act in the developing testis or the developing ovary, or what these signalling molecules might be. Here, we review the evidence for the existence of meiosis-inducing and meiosis-preventing substances in the developing gonad, and more recent studies aimed at identifying these molecules in mice. In addition, we discuss the possibility that some of the reported effects of these factors on germ cell development may be indirect consequences of impairing sexual differentiation of gonadal somatic cells or germ cell survival. Understanding the molecular mechanisms of germ cell sex determination may provide candidate genes for susceptibility to germ cell tumours and infertility in humans.


Asunto(s)
Células Germinativas/fisiología , Mamíferos/fisiología , Procesos de Determinación del Sexo , Aneuploidia , Animales , Linaje de la Célula/genética , Fertilidad/fisiología , Regulación del Desarrollo de la Expresión Génica , Gónadas/citología , Gónadas/embriología , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Humanos , Neoplasias/fisiopatología , Diferenciación Sexual/genética , Diferenciación Sexual/fisiología , Transducción de Señal/fisiología
20.
Clin Endocrinol (Oxf) ; 61(4): 431-6, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15473874

RESUMEN

OBJECTIVE: Somatostatin (SST) modulates exocrine and endocrine secretion, proliferation and apoptosis via five G protein-linked receptors (SSTRs 1-5). Long-acting SST analogues such as Octreotide, and the new analogue SOM230, have been developed for the treatment of neuroendocrine tumours. Octreotide has previously been reported to inhibit endothelial proliferation. We wished to determine if SOM230 is a more potent inhibitor of endothelial cell proliferation than Octreotide. DESIGN: We have determined the expression of SSTRs in proliferating human umbilical vein endothelial cells (HUVECs) in vitro, and determined their response to the somatostatin analogues SOM230 and Octreotide, following vascular endothelial growth factor (VEGF) stimulation. MEASUREMENTS: Quantitative RT-PCR and western blotting were used to determine the expression of SSTRs 1-5 in proliferating HUVECs. These cells were grown in media containing 200 pg/ml VEGF and treated with 10(-11) to 10(-6) M Octreotide or SOM230. The WST-1 assay was then used to determine the effects of these analogues on HUVEC proliferation. RESULTS: Using quantitative RT-PCR and western blotting, HUVECs were found to express SSTRs 1, 2 and 5. SSTRs 3 and 4 were not detected. Using the WST-1 assay, SOM230 was found to significantly inhibit proliferation by up to 46.0% +/- 9.4% (10(-6)-10(-7) M; P < 0.05), whereas in parallel studies Octreotide failed to inhibit HUVEC proliferation. CONCLUSIONS: The pan SST analogue SOM230 inhibits proliferation of HUVECs, which are unaffected by Octreotide. SOM230 may thus represent a suitable candidate drug for antiangiogenic therapy.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Somatostatina/análogos & derivados , Somatostatina/farmacología , Western Blotting/métodos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Depresión Química , Células Endoteliales/citología , Humanos , Octreótido/farmacología , Receptores de Somatostatina/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA