Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Med Chem Lett ; 13(8): 1295-1301, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35978693

RESUMEN

The DNA-PK complex is activated by double-strand DNA breaks and regulates the non-homologous end-joining repair pathway; thus, targeting DNA-PK by inhibiting the DNA-PK catalytic subunit (DNA-PKcs) is potentially a useful therapeutic approach for oncology. A previously reported series of neutral DNA-PKcs inhibitors were modified to incorporate a basic group, with the rationale that increasing the volume of distribution while maintaining good metabolic stability should increase the half-life. However, adding a basic group introduced hERG activity, and basic compounds with modest hERG activity (IC50 = 10-15 µM) prolonged QTc (time from the start of the Q wave to the end of the T wave, corrected by heart rate) in an anaesthetized guinea pig cardiovascular model. Further optimization was necessary, including modulation of pK a, to identify compound 18, which combines low hERG activity (IC50 = 75 µM) with excellent kinome selectivity and favorable pharmacokinetic properties.

2.
Sci Transl Med ; 12(541)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350132

RESUMEN

Gastrointestinal stromal tumor (GIST) is the most common human sarcoma driven by mutations in KIT or platelet-derived growth factor α (PDGFRα). Although first-line treatment, imatinib, has revolutionized GIST treatment, drug resistance due to acquisition of secondary KIT/PDGFRα mutations develops in a majority of patients. Second- and third-line treatments, sunitinib and regorafenib, lack activity against a plethora of mutations in KIT/PDGFRα in GIST, with median time to disease progression of 4 to 6 months and inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) causing high-grade hypertension. Patients with GIST have an unmet need for a well-tolerated drug that robustly inhibits a range of KIT/PDGFRα mutations. Here, we report the discovery and pharmacological characterization of AZD3229, a potent and selective small-molecule inhibitor of KIT and PDGFRα designed to inhibit a broad range of primary and imatinib-resistant secondary mutations seen in GIST. In engineered and GIST-derived cell lines, AZD3229 is 15 to 60 times more potent than imatinib in inhibiting KIT primary mutations and has low nanomolar activity against a wide spectrum of secondary mutations. AZD3229 causes durable inhibition of KIT signaling in patient-derived xenograft (PDX) models of GIST, leading to tumor regressions at doses that showed no changes in arterial blood pressure (BP) in rat telemetry studies. AZD3229 has a superior potency and selectivity profile to standard of care (SoC) agents-imatinib, sunitinib, and regorafenib, as well as investigational agents, avapritinib (BLU-285) and ripretinib (DCC-2618). AZD3229 has the potential to be a best-in-class inhibitor for clinically relevant KIT/PDGFRα mutations in GIST.


Asunto(s)
Antineoplásicos , Tumores del Estroma Gastrointestinal , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Humanos , Mutación , Naftiridinas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/genética , Pirazoles , Pirroles , Ratas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Triazinas , Urea/análogos & derivados , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA