Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299241

RESUMEN

In this paper, we suggest that the atmospheric pressure plasma treatment of pure titanium metal may be useful for improving the ability of rat bone marrow cells (RBMCs) to induce hard tissue differentiation. Previous studies have reported that the use of argon gas induces a higher degree of hard tissue formation. Therefore, this study compares the effects of plasma treatment with argon gas on the initial adhesion ability and hard tissue differentiation-inducing ability of RBMCs. A commercially available titanium metal plate was used as the experimental material. A plate polished using water-resistant abrasive paper #1500 was used as the control, and a plate irradiated with argon mixed with atmospheric pressure plasma was used as the experimental plate. No structural change was observed on the surface of the titanium metal plate in the scanning electron microscopy results, and no change in the surface roughness was observed via scanning probe microscopy. X-ray photoelectron spectroscopy showed a decrease in the carbon peak and the formation of hydroxide in the experimental group. In the distilled water drop test, a significant decrease in the contact angle was observed for the experimental group, and the results indicated superhydrophilicity. Furthermore, the bovine serum albumin adsorption, initial adhesion of RBMCs, alkaline phosphatase activity, calcium deposition, and genetic marker expression of rat bone marrow cells were higher in the experimental group than those in the control group at all time points. Rat distal femur model are used as in vivo model. Additionally, microcomputed tomography analysis showed significantly higher results for the experimental group, indicating a large amount of the formed hard tissue. Histopathological evaluation also confirmed the presence of a prominent newly formed bone seen in the images of the experimental group. These results indicate that the atmospheric pressure plasma treatment with argon gas imparts superhydrophilicity, without changing the properties of the pure titanium plate surface. It was also clarified that it affects the initial adhesion of bone marrow cells and the induction of hard tissue differentiation.


Asunto(s)
Argón/farmacología , Oseointegración/efectos de los fármacos , Gases em Plasma/química , Animales , Argón/química , Presión Atmosférica , Células de la Médula Ósea/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Masculino , Microscopía Electrónica de Rastreo/métodos , Oseointegración/fisiología , Osteogénesis/efectos de los fármacos , Espectroscopía de Fotoelectrones/métodos , Gases em Plasma/farmacología , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Titanio/química , Microtomografía por Rayos X/métodos
2.
Int J Mol Sci ; 21(10)2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429471

RESUMEN

Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.


Asunto(s)
Descontaminación , Nanoestructuras/química , Oseointegración/efectos de los fármacos , Gases em Plasma/farmacología , Titanio/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Biopelículas/efectos de los fármacos , Proteína Morfogenética Ósea 2/metabolismo , Calcio/metabolismo , Adhesión Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Imagenología Tridimensional , Espacio Intracelular/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Nanoestructuras/ultraestructura , Osteocalcina/metabolismo , Osteogénesis/efectos de los fármacos , Espectroscopía de Fotoelectrones , Prótesis e Implantes , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA