Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 10(1): 18166, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097799

RESUMEN

Stress hyperglycemia and insulin resistance are evolutionarily conserved metabolic adaptations to severe injury including major trauma, burns, or hemorrhagic shock (HS). In response to injury, the neuroendocrine system increases secretion of counterregulatory hormones that promote rapid mobilization of nutrient stores, impair insulin action, and ultimately cause hyperglycemia, a condition known to impair recovery from injury in the clinical setting. We investigated the contributions of adipocyte lipolysis to the metabolic response to acute stress. Both surgical injury with HS and counterregulatory hormone (epinephrine) infusion profoundly stimulated adipocyte lipolysis and simultaneously triggered insulin resistance and hyperglycemia. When lipolysis was inhibited, the stress-induced insulin resistance and hyperglycemia were largely abolished demonstrating an essential requirement for adipocyte lipolysis in promoting stress-induced insulin resistance. Interestingly, circulating non-esterified fatty acid levels did not increase with lipolysis or correlate with insulin resistance during acute stress. Instead, we show that impaired insulin sensitivity correlated with circulating levels of the adipokine resistin in a lipolysis-dependent manner. Our findings demonstrate the central importance of adipocyte lipolysis in the metabolic response to injury. This insight suggests new approaches to prevent insulin resistance and stress hyperglycemia in trauma and surgery patients and thereby improve outcomes.


Asunto(s)
Adipocitos/metabolismo , Hiperglucemia/metabolismo , Lipólisis/fisiología , Choque Hemorrágico/complicaciones , Herida Quirúrgica/complicaciones , Animales , Modelos Animales de Enfermedad , Epinefrina/administración & dosificación , Epinefrina/metabolismo , Femenino , Humanos , Hiperglucemia/sangre , Hiperglucemia/etiología , Hiperglucemia/fisiopatología , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Lipasa/genética , Lipasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Resistina/sangre , Resistina/metabolismo , Choque Hemorrágico/sangre , Choque Hemorrágico/metabolismo , Choque Hemorrágico/fisiopatología , Herida Quirúrgica/sangre , Herida Quirúrgica/metabolismo , Herida Quirúrgica/fisiopatología
2.
Mol Metab ; 7: 23-34, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29153923

RESUMEN

OBJECTIVE: Macrophages control tissue homeostasis and inflammation by sensing and responding to environmental cues. However, the metabolic adaptation of macrophages to oxidative tissue damage and its translation into inflammatory mechanisms remains enigmatic. METHODS: Here we identify the critical regulatory pathways that are induced by endogenous oxidation-derived DAMPs (oxidized phospholipids, OxPL) in vitro, leading to formation of a unique redox-regulatory metabolic phenotype (Mox), which is strikingly different from conventional classical or alternative macrophage activation. RESULTS: Unexpectedly, metabolomic analyses demonstrated that Mox heavily rely on glucose metabolism and the pentose phosphate pathway (PPP) to support GSH production and Nrf2-dependent antioxidant gene expression. While the metabolic adaptation of macrophages to OxPL involved transient suppression of aerobic glycolysis, it also led to upregulation of inflammatory gene expression. In contrast to classically activated (M1) macrophages, Hif1α mediated expression of OxPL-induced Glut1 and VEGF but was dispensable for Il1ß expression. Mechanistically, we show that OxPL suppress mitochondrial respiration via TLR2-dependent ceramide production, redirecting TCA metabolites to GSH synthesis. Finally, we identify spleen tyrosine kinase (Syk) as a critical downstream signaling mediator that translates OxPL-induced effects into ceramide production and inflammatory gene regulation. CONCLUSIONS: Together, these data demonstrate the metabolic and bioenergetic requirements that enable macrophages to translate tissue oxidation status into either antioxidant or inflammatory responses via sensing OxPL. Targeting dysregulated redox homeostasis in macrophages could therefore lead to novel therapies to treat chronic inflammation.


Asunto(s)
Ceramidas/metabolismo , Homeostasis , Macrófagos/metabolismo , Estrés Oxidativo , Quinasa Syk/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Células Cultivadas , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glutatión/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Vía de Pentosa Fosfato , Transducción de Señal , Quinasa Syk/genética , Receptor Toll-Like 2/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Sci Rep ; 6: 26814, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271118

RESUMEN

Gaussia luciferase (Gluc)-with its many favorable traits such as small size, bright emission, and exceptional stability-has become a prominent reporter protein for a wide range of bioluminescence-based detection applications. The ten internal cysteine residues crucial to functional structure formation, however, make expression of high quantities of soluble protein in bacterial systems difficult. In addition to this challenge, the current lack of structural data further complicates the use of Gluc for in vitro applications, such as biosensors, or cellular delivery, both of which rely heavily on robust and reproducible bioconjugation techniques. While Gluc is already appreciably small for a luciferase, a reduction in size that still retains significant bioluminescent activity, in conjunction with a more reproducible bioorthogonal method of chemical modification and facile expression in bacteria, would be very beneficial in biosensor design and cellular transport studies. We have developed truncated variants of Gluc, which maintain attractive bioluminescent features, and have characterized their spectral and kinetic properties. These variants were purified in high quantities from a bacterial system. Additionally, a C-terminal linker has been incorporated into these variants that can be used for reliable, specific modification through tyrosine-based bioconjugation techniques, which leave the sensitive network of cysteine residues undisturbed.


Asunto(s)
Copépodos/enzimología , Luciferasas/química , Mediciones Luminiscentes , Secuencia de Aminoácidos , Animales , Técnicas Biosensibles , Dicroismo Circular , Escherichia coli , Genes Reporteros , Semivida , Luciferasas/análisis , Luciferasas/genética , Peso Molecular , Oxidación-Reducción , Conformación Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Eliminación de Secuencia , Solubilidad , Espectrofotometría Ultravioleta , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA