Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Toxicol In Vitro ; 99: 105884, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945376

RESUMEN

Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths globally. Systemic therapy is the only treatment option for HCC at an advanced stage, with limited therapeutic response. In this study, we evaluated the antitumor potential of four N-acylhydrazone (NAH) derivatives, namely LASSBio-1909, 1911, 1935, and 1936, on HCC cell lines. We have previously demonstrated that the aforementioned NAH derivatives selectively inhibit histone deacetylase 6 (HDAC6) in lung cancer cells, but their effects on HCC cells have not been explored. Thus, the present study aimed to evaluate the effects of NAH derivatives on the proliferative behavior of HCC cells. LASSBio-1911 was the most cytotoxic compound against HCC cells, however its effects were minimal on normal cells. Our results showed that LASSBio-1911 inhibited HDAC6 in HCC cells leading to cell cycle arrest and decreased cell proliferation. There was also an increase in the frequency of cells in mitosis onset, which was associated with disturbing mitotic spindle formation. These events were accompanied by elevated levels of CDKN1A mRNA, accumulation of CCNB1 protein, and sustained ERK1 phosphorylation. Furthermore, LASSBio-1911 induced DNA damage, resulting in senescence and/or apoptosis. Our findings indicate that selective inhibition of HDAC6 may provide an effective therapeutic strategy for the treatment of advanced HCC, including tumor subtypes with integrated viral genome. Further, in vivo studies are required to validate the antitumor effect of LASSBio-1911 on liver cancer.

2.
Biomedicines ; 12(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672246

RESUMEN

Liver cancer is the second leading cause of cancer-related death in males. It is estimated that approximately one million deaths will occur by 2030 due to hepatic cancer. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer subtype and is commonly diagnosed at an advanced stage. The drug arsenal used in systemic therapy for HCC is very limited. Multikinase inhibitors sorafenib (Nexavar®) and lenvatinib (Lenvima®) have been used as first-line drugs with modest therapeutic effects. In this scenario, it is imperative to search for new therapeutic strategies for HCC. Herein, the antiproliferative activity of N-acylhydrazone derivatives was evaluated on HCC cells (HepG2 and Hep3B), which were chemically planned on the ALL-993 scaffold, a potent inhibitor of vascular endothelial growth factor 2 (VEGFR2). The substances efficiently reduced the viability of HCC cells, and the LASSBio-2052 derivative was the most effective. Further, we demonstrated that LASSBio-2052 treatment induced FOXM1 downregulation, which compromises the transcriptional activation of genes required for G2/M transition, such as AURKA and AURKB, PLK1, and CDK1. In addition, LASSBio-2052 significantly reduced CCNB1 and CCND1 expression in HCC cells. Our findings indicate that LASSBio-2052 is a promising prototype for further in vivo studies.

3.
Toxicol In Vitro ; 93: 105686, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37652252

RESUMEN

Breast cancer is the leading cause of cancer death among women worldwide. About 75% of all diagnosed cases are hormone-positive, which are treated with hormone therapy. However, many patients are refractory or become resistant to the drugs used in therapeutic protocols. In this scenario, it is essential to identify new substances with pharmacological potential against breast cancer. VEGFR2 inhibitors are considered promising antitumor agents not only due to their antiangiogenic activity but also by inhibiting the proliferation of tumor cells. Thus, the present study aimed to evaluate the effects of N-acylhydrazone derivative LASSBio-2029 on the proliferative behavior of MCF-7 cells. We observed a promising antitumor potential of this substance due to its ability to modulate critical cell cycle regulators including mitotic kinases (CDK1, AURKA, AURKB, and PLK1) and CDK inhibitor (CDKN1A). Increased frequencies of abnormal mitosis and apoptotic cells were observed in response to treatment. A molecular docking analysis predicts that LASSBio-2029 could bind to the proto-oncoprotein ABL1, which participates in cell cycle control, interacting with other controller proteins and regulating centrosome-associated tubulins. Finally, we created a gene signature with the downregulated genes, whose reduced expression is associated with a higher relapse-free survival probability in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Proteínas de Ciclo Celular/genética , Simulación del Acoplamiento Molecular , Mitosis , Puntos de Control del Ciclo Celular , Estrógenos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular
4.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37259298

RESUMEN

Melanoma is considered the most aggressive form of skin cancer, showing high metastatic potential and persistent high mortality rates despite the introduction of immunotherapy and targeted therapies. Thus, it is important to identify new drug candidates for melanoma. The design of hybrid molecules, with different pharmacophore fragments combined in the same scaffold, is an interesting strategy for obtaining new multi-target and more effective anticancer drugs. We designed nine hybrid compounds bearing piperine and chlorogenic acid pharmacophoric groups and evaluated their antitumoral potential on melanoma cells with distinct mutational profiles SK-MEL-147, CHL-1 and WM1366. We identified the compound named PQM-277 (3a) to be the most cytotoxic one, inhibiting mitosis progression and promoting an accumulation of cells in pro-metaphase and metaphase by altering the expression of genes that govern G2/M transition and mitosis onset. Compound 3a downregulated FOXM1, CCNB1, CDK1, AURKA, AURKB, and PLK1, and upregulated CDKN1A. Molecular docking showed that 3a could interact with the CUL1-RBX1 complex, which activity is necessary to trigger molecular events essential for FOXM1 transactivation and, in turn, G2/M gene expression. In addition, compound 3a effectively induced apoptosis by increasing BAX/BCL2 ratio. Our findings demonstrate that 3a is an important antitumor candidate prototype and support further investigations to evaluate its potential for melanoma treatment, especially for refractory cases to BRAF/MEK inhibitors.

5.
Pharmaceutics ; 14(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36559076

RESUMEN

Hepatocellular carcinoma is the seventh most common type of cancer in the world, with limited treatment options. A promising strategy to treat cancer is to associate chemotherapeutics and plant bioactive compounds. Here, we examined whether diallyl disulfide (DADS; 50-200 µM) and sorafenib (SORA; 8 µM), either alone or in combination, were toxic to hepatocellular carcinoma cells (HepG2) in vitro. We assessed whether DADS and/or SORA induced cell death (LIVE/DEAD assay and autophagy) and cell cycle changes (flow cytometry), altered expression of key genes and proteins (RT-qPCR and Western blot), and modulated tumorigenesis signatures, such as proliferation (clonogenic assay), migration (wound healing), and invasion (inserts). The DADS + SORA combination elicited autophagic cell death by upregulating LC3 and NRF2 expression and downregulating FOS and TNF expression; induced the accumulation of cells in the G1 phase which thereby upregulated the CHEK2 expression; and inhibited invasion by downregulating the MMP2 expression. Predictive analysis indicated the participation of the MAPK pathway in the reported results. The DADS + SORA combination suppressed both cell invasion and clonogenic survival, which indicated that it dampened tumor growth, proliferation, invasion, and metastatic potential. Therefore, the DADS + SORA combination is a promising therapy to develop new clinical protocols.

6.
Genet Mol Biol ; 43(3): e20190347, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32644097

RESUMEN

Dietary phenolic compounds such as caffeic and chlorogenic acid exert an antiproliferative effect and modulate the gene-specific DNA methylation status in human breast tumor cells, but it remains unclear whether they interfere with global DNA methylation in human leukemia cells. We examined whether caffeic and chlorogenic acid (1-250 µM) exert antitumor action in human promyelocytic leukemia cells (HL-60) and human acute T-cell leukemia cells (Jurkat). Caffeic and chlorogenic acid did not reduce cell viability in the two cell lines, as assessed using the neutral red uptake and MTT assays. These phenolic acids (1-100 µM) neither induced DNA damage (comet assay) nor increased the micronuclei frequency (micronucleus assay) in HL-60 and Jurkat cells, indicating that they were not genotoxic or mutagenic. Analysis of global DNA methylation levels using a 5-mC DNA ELISA kit revealed that chlorogenic acid at a non-cytotoxic concentration (100 µM) induced global DNA hypomethylation in Jurkat cells, but not in HL-60 cells, suggesting that it exerts a cell-specific effect. Caffeic acid did not change global DNA methylation. As other phenolic compounds, chlorogenic acid probably modulates DNA methylation by targeting DNA methyltransferases. The hypomethylating action of chlorogenic acid can be beneficial against hematological malignances whose pathogenic processes involve impairment of DNA methylation.

7.
Artículo en Inglés | MEDLINE | ID: mdl-32660825

RESUMEN

Oxidative stress is a critical factor in the pathogenesis of several gastrointestinal diseases. Sulforaphane (SFN), a bioactive compound found in cruciferous vegetables, activates the redox-sensitive nuclear erythroid 2-related factor 2 (NRF2). In addition to its protective role, SFN exerts cytotoxic effects on cancer cells. However, there is a lack of information concerning the toxicity of SFN in normal cells. We investigated the effects of SFN on cell viability, antioxidant defenses, and gene expression in human stomach mucosa cells (MNP01). SFN reduced ROS formation and protected the cells against induced oxidative stress but high concentrations increased apoptosis. An intermediate SFN concentration (8 µM) was chosen for RNA sequencing studies. We observed upregulation of genes of the NRF2 (antioxidant) pathway, the DNA damage response, and apoptosis signaling; whereas SFN downregulated cell cycle and DNA repair pathway genes. SFN may be cytoprotective at low concentrations and cytotoxic at high concentrations.


Asunto(s)
Apoptosis/efectos de los fármacos , Isotiocianatos/farmacología , Membrana Mucosa/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estómago/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Anticarcinógenos/farmacología , Antioxidantes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Membrana Mucosa/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfóxidos , Regulación hacia Arriba/efectos de los fármacos
8.
Food Chem Toxicol ; 136: 111047, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31838189

RESUMEN

Abnormal epigenetic alterations are one of the keystones of cancer development. Epigenetic targeting drugs have become a promising and effective cancer therapy strategy. However, due to the high toxicity and unclear mechanisms of action of these drugs, natural compounds that cause epigenetic modulation have also been studied. Sulforaphane (SFN) is a promising bioactive compound for epigenetic targeting therapy. In this study, we investigate the effects of SFN on gene expression and DNA methylation in human hepatocellular carcinoma cells (HepG2). Using high throughput technologies in combination with cell-based assays, we find SFN is a potent anticancer agent, as it induces DNA damage, mitotic spindle abnormalities followed by apoptosis and proliferation inhibition in HepG2 cells. Our results show the upregulation of DNA damage response and cell cycle checkpoint genes. Also, we find the downregulation of cellular pathways frequently overexpressed in human cancer. As expected, SFN exerts epigenetic modulation effects by inhibiting histone deacetylases (HDACs). SFN might affect the activity of oncogenic transcription factors through methylation of its binding sites motifs. Our findings offer insights into SFN chemopreventive molecular effects in HepG2 cells and highlight SFN as a valuable natural approach to cancer therapy for future investigation.


Asunto(s)
Daño del ADN/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Isotiocianatos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células Hep G2 , Humanos , Transducción de Señal/efectos de los fármacos , Sulfóxidos , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba
9.
Artículo en Inglés | MEDLINE | ID: mdl-31131003

RESUMEN

BACKGROUND: The use of animal venoms and their toxins as material sources for biotechnological applications has received much attention from the pharmaceutical industry. L-amino acid oxidases from snake venoms (SV-LAAOs) have demonstrated innumerous biological effects and pharmacological potential against different cancer types. Hepatocellular carcinoma has increased worldwide, and the aberrant DNA methylation of liver cells is a common mechanism to promote hepatic tumorigenesis. Moreover, tumor microenvironment plays a major role in neoplastic transformation. To elucidate the molecular mechanisms responsible for the cytotoxic effects of SV-LAAO in human cancer cells, this study aimed to evaluate the cytotoxicity and the alterations in DNA methylation profiler in the promoter regions of cell-cycle genes induced by BjussuLAAO-II, an LAAO from Bothrops jaracussu venom, in human hepatocellular carcinoma (HepG2) cells in monoculture and co-culture with endothelial (HUVEC) cells. METHODS: BjussuLAAO-II concentrations were 0.25, 0.50, 1.00 and 5.00 µg/mL. Cell viability was assessed by MTT assay and DNA methylation of the promoter regions of 22 cell-cycle genes by EpiTect Methyl II PCR array. RESULTS: BjussuLAAO-II decreased the cell viability of HepG2 cells in monoculture at all concentrations tested. In co-culture, 1.00 and 5.00 µg/mL induced cytotoxicity (p < 0.05). BjussuLAAO-II increased the methylation of CCND1 and decreased the methylation of CDKN1A in monoculture and GADD45A in both cell-culture models (p < 0.05). CONCLUSION: Data showed BjussuLAAO-II induced cytotoxicity and altered DNA methylation of the promoter regions of cell-cycle genes in HepG2 cells in monoculture and co-culture models. We suggested the analysis of DNA methylation profile of GADD45A as a potential biomarker of the cell cycle effects of BjussuLAAO-II in cancer cells. The tumor microenvironment should be considered to comprise part of biotechnological strategies during the development of snake-toxin-based novel drugs.

10.
Toxicology ; 422: 25-34, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31004705

RESUMEN

Thermogenic supplements containing synephrine (SN) are widely used to weight loss. SN is a proto-alkaloid naturally found in the bark of immature fruits of Citrus aurantium (bitter orange) that has been added to thermogenic supplements due to its chemical and pharmacological similarity with adrenergic amines, such as ephedrine and amphetamines. Although orally ingested SN is mainly metabolized in the liver, it remains unclear whether it affects the redox status and genetic material of human hepatic cells. The present study aims to examine whether SN affects cell viability, cell cycle, redox balance, genomic stability, and expression of the DNA damage response (DDR)-related genes ATM, ATR, CHEK1, CHECK2, TP53, and SIRT1 in HepG2 cells - used as in vitro hepatocyte model. SN induced overproduction of intracellular reactive oxygen species (ROS) after 6 h of treatment with the three concentrations tested (2, 20 and 200 µM). After 24 h of treatment, SN at 200 µM induced intracellular ROS overproduction and exerted cytostatic effects, while SN at 20 and 200 µM increased the levels of GPx and GSH. SN was not cytotoxic (2-5000 µM), genotoxic, and mutagenic and did not alter the expression of DDR-related genes (2-200 µM), indicating that the fast/specific SN metabolization and upregulation of antioxidant defense components to detoxify intracellular ROS were sufficient to prevent intracellular damage in HepG2 cells. In conclusion, SN showed no cytotoxic, genotoxic, and mutagenic potential at relevant concentrations for thermogenic users in human hepatic cells in vitro, although, it plays pro-oxidative action, and cytostatic effects. Taken together, our results suggest that other investigations about the hazard absence of this thermogenic compound should be performed.


Asunto(s)
Citotoxinas/toxicidad , Suplementos Dietéticos/efectos adversos , Oxidantes/toxicidad , Sinefrina/toxicidad , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo
11.
Bioorg Chem ; 85: 455-468, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776556

RESUMEN

This study describes a series of newly synthesized phosphine/diimine ruthenium complexes containing the lawsone as bioligand with enhanced cytotoxicity against different cancer cells, and apoptosis induction in prostatic cancer cells DU-145. The complexes [Ru(law)(N-N)2]PF6 where N-N is 2,2'-bipyridine (1) or 1,10-phenanthroline (2) and [Ru(law)(dppm)(N-N)]PF6, where dppm means bis(diphenylphosphino)methane, N-N is 2,2'-bipyridine (3) or 1,10-phenanthroline (4), and law is lawsone, were synthesized and fully characterized by elemental analysis, molar conductivity, NMR, UV-vis, IR spectroscopies and cyclic voltammetry. The interaction of the complexes (1-4) with DNA was evaluated by circular dichroism, gel electrophoresis, and fluorescence, and the complexes presented interactions by the minor grooves DNA. The phosphinic series of complexes exhibited a remarkably broad spectrum of anticancer activity with approximately 34-fold higher than cisplatin and 5-fold higher than doxorubicin, inhibiting the growth of 3D tumor spheroids and the ability to retain the colony survival of DU-145 cells. Also, the complex (4) inhibits DU-145 cell adhesion and migration potential indicating antimetastatic properties. The mechanism of its anticancer activity was found to be related to increased reactive oxygen species (ROS) generation, increased the BAX/BCL-2 ratio and subsequent apoptosis induction. Overall, these findings suggested that the complex (4) could be a promising candidate for further evaluation as a chemotherapeutic agent in the prostate cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Naftoquinonas/farmacología , Esferoides Celulares/efectos de los fármacos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Bovinos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , ADN/metabolismo , Humanos , Sustancias Intercalantes/síntesis química , Sustancias Intercalantes/metabolismo , Sustancias Intercalantes/farmacología , Masculino , Naftoquinonas/síntesis química , Naftoquinonas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Rutenio/química
12.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-990125

RESUMEN

The use of animal venoms and their toxins as material sources for biotechnological applications has received much attention from the pharmaceutical industry. L-amino acid oxidases from snake venoms (SV-LAAOs) have demonstrated innumerous biological effects and pharmacological potential against different cancer types. Hepatocellular carcinoma has increased worldwide, and the aberrant DNA methylation of liver cells is a common mechanism to promote hepatic tumorigenesis. Moreover, tumor microenvironment plays a major role in neoplastic transformation. To elucidate the molecular mechanisms responsible for the cytotoxic effects of SV-LAAO in human cancer cells, this study aimed to evaluate the cytotoxicity and the alterations in DNA methylation profiler in the promoter regions of cell-cycle genes induced by BjussuLAAO-II, an LAAO from Bothrops jaracussu venom, in human hepatocellular carcinoma (HepG2) cells in monoculture and co-culture with endothelial (HUVEC) cells. Methods: BjussuLAAO-II concentrations were 0.25, 0.50, 1.00 and 5.00 μg/mL. Cell viability was assessed by MTT assay and DNA methylation of the promoter regions of 22 cell-cycle genes by EpiTect Methyl II PCR array. Results: BjussuLAAO-II decreased the cell viability of HepG2 cells in monoculture at all concentrations tested. In co-culture, 1.00 and 5.00 μg/mL induced cytotoxicity (p < 0.05). BjussuLAAO-II increased the methylation of CCND1 and decreased the methylation of CDKN1A in monoculture and GADD45A in both cell-culture models (p < 0.05). Conclusion: Data showed BjussuLAAO-II induced cytotoxicity and altered DNA methylation of the promoter regions of cell-cycle genes in HepG2 cells in monoculture and co-culture models. We suggested the analysis of DNA methylation profile of GADD45A as a potential biomarker of the cell cycle effects of BjussuLAAO-II in cancer cells. The tumor microenvironment should be considered to comprise part of biotechnological strategies during the development of snake-toxin-based novel drugs.(AU)


Asunto(s)
Venenos de Serpiente , Biomarcadores , Bothrops , Carcinoma Hepatocelular , Células Hep G2 , Epigenómica
13.
J Toxicol Environ Health A ; 80(19-21): 1116-1128, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28880739

RESUMEN

Some important environmental factors that influence the development of cardiovascular diseases (CVD) include tobacco, excess alcohol, and unhealthy diet. Methionine obtained from the diet participates in the synthesis of DNA, proteins, lipids and affects homocysteine levels, which is associated with the elevated risk for CVD development. Therefore, the aim of this study was to investigate the manner in which dietary methionine might affect cellular mechanisms underlying CVD occurrence. Swiss albino mice were fed either control (0.3% DL-methionine), methionine-supplemented (2% DL-methionine), or a methionine-deprived diet (0% DL-methionine) over a 10-week period. The parameters measured included plasma homocysteine concentrations, oxidative stress by reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, levels of inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as expression of genes associated with CVD. The levels of apolipoprotein A5 (APOA5), a regulator of plasma triglycerides, were measured. The methionine-supplemented diet increased oxidative stress by lowering the GSH/GSSG ratio in heart tissues and decreased expression of the genes Apob, Ctgf, Serpinb2, Spp1, Il1b, and Sell, but elevated expression of Thbs4, Tgfb2, Ccr1, and Vegfa. Methionine-deprived diet reduced expression of Col3a1, Cdh5, Fabp3, Bax, and Hbegf and increased expression of Sell, Ccl5, Itga2, Birc3, Msr1, Bcl2a1a, Il1r2, and Selp. Methionine-deprived diet exerted pro-inflammatory consequences as evidenced by elevated levels of cytokines IL-1ß, TNF-α, and IL-6 noted in liver. Methionine-supplemented diet increased hepatic IL-6 and cardiac TNF-α. Both methionine supplementation and deprivation lowered hepatic levels of APOA5. In conclusion, data demonstrated that a methionine-supplemented diet modulated important biological processes associated with high risk of CVD development.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Citocinas/metabolismo , Suplementos Dietéticos , Regulación de la Expresión Génica , Corazón/fisiología , Hígado/fisiología , Metionina , Animales , Biomarcadores/sangre , Enfermedades Cardiovasculares/etiología , Dieta , Femenino , Homocisteína/sangre , Hígado/metabolismo , Ratones , Miocardio/metabolismo , Estrés Oxidativo
14.
Int J Biol Macromol ; 86: 309-20, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26812110

RESUMEN

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the presence of the Bcr-Abl tyrosine kinase protein, which confers resistance to apoptosis in leukemic cells. Tyrosine kinase inhibitors (TKIs) are effectively used to treat CML; however, CML patients in the advanced (CML-AP) and chronic (CML-CP) phases of the disease are usually resistant to TKI therapy. Thus, it is necessary to seek for novel agents to treat CML, such as the enzyme l-amino acid oxidase from Calloselasma rhodostoma (CR-LAAO) snake venom. We examined the antitumor effect of CR-LAAO in Bcr-Abl(+) cell lines and peripheral blood mononuclear cells (PBMC) from healthy subjects and CML patients. CR-LAAO was more cytotoxic towards Bcr-Abl(+) cell lines than towards healthy subjects' PBMC. The H2O2 produced during the enzymatic action of CR-LAAO mediated its cytotoxic effect. The CR-LAAO induced apoptosis in Bcr-Abl(+) cells, as detected by caspases 3, 8, and 9 activation, loss of mitochondrial membrane potential, and DNA damage. CR-LAAO elicited apoptosis in PBMC from CML-CP patients without TKI treatment more strongly than in PBMC from healthy subjects and TKI-treated CML-CP and CML-AP patients. The antitumor effect of CR-LAAO against Bcr-Abl(+) cells makes this toxin a promising candidate to CML therapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Venenos de Crotálidos/enzimología , Proteínas de Fusión bcr-abl/metabolismo , Peróxido de Hidrógeno/metabolismo , L-Aminoácido Oxidasa/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Adulto , Antineoplásicos/uso terapéutico , Caspasas/metabolismo , Línea Celular Tumoral , Daño del ADN , Interacciones Farmacológicas , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , L-Aminoácido Oxidasa/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/sangre , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores
15.
Food Chem Toxicol ; 70: 205-13, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24865317

RESUMEN

Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.


Asunto(s)
Daño del ADN/efectos de los fármacos , Luteína/farmacología , Estrés Oxidativo/efectos de los fármacos , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Antioxidantes/farmacología , Cisplatino/efectos adversos , Ensayo Cometa , Femenino , Regulación de la Expresión Génica , Glutatión/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidación-Reducción/efectos de los fármacos , Oxígeno/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
16.
Mol Nutr Food Res ; 58(7): 1502-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24827819

RESUMEN

SCOPE: A compromised nutritional status in methyl-group donors may provoke several molecular alterations triggering the development of nonalcoholic fatty liver disease (NAFLD) in humans and experimental animals. In this study, we investigated a role and the underlying molecular mechanisms of methionine metabolic pathway malfunctions in the pathogenesis of NAFLD. METHODS AND RESULTS: We fed female Swiss albino mice a control (methionine-adequate) diet and two experimental (methionine-deficient or methionine-supplemented) diets for 10 weeks, and the levels of one-carbon metabolites, expression of one-carbon and lipid metabolism genes in the livers were evaluated. We demonstrate that both experimental diets increased hepatic levels of S-adenosyl-l-homocysteine and homocysteine, altered expression of one-carbon and lipid metabolism genes, and caused lipid accumulation, especially in mice fed the methionine-deficient diet. Markers of oxidative and ER stress response were also elevated in the livers of mice fed either diet. CONCLUSION: Our findings indicate that both dietary methionine deficiency and methionine supplementation can induce molecular abnormalities in the liver associated with the development of NAFLD, including deregulation in lipid and one-carbon metabolic pathways, and induction of oxidative and ER stress. These pathophysiological events may ultimately lead to lipid accumulation in the livers, triggering the development of NAFLD.


Asunto(s)
Suplementos Dietéticos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Metionina/administración & dosificación , Metionina/deficiencia , Animales , Femenino , Glutatión/sangre , Homocisteína/sangre , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Triglicéridos/sangre
17.
Food Chem Toxicol ; 62: 456-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24036140

RESUMEN

Inadequate nutrient intake can influence the genome. Since methionine is an essential amino acid that may influence DNA integrity due to its role in the one-carbon metabolism pathway, we were interested in whether methionine imbalance can lead to genotoxic events. Adult female Swiss mice were fed a control (0.3% dl-methionine), methionine-supplemented (2.0% DL-methionine) or methionine-deficient (0% DL-methionine) diet over a 10-week period. Chromosomal damage was assessed in peripheral blood using a micronucleus test, and DNA damage was assessed in the liver, heart and peripheral blood tissues using a comet assay. The mRNA expression of the mismatch repair genes Mlh1 and Msh2 was analyzed in the liver. The frequency of micronucleus in peripheral blood was increased by 122% in the methionine-supplemented group (p<0.05). The methionine-supplemented diet did not induce DNA damage in the heart and liver tissues, but it increased DNA damage in the peripheral blood. The methionine-deficient diet reduced basal DNA damage in liver tissue. This reduction was correlated with decreased mRNA expression of Msh2. Our results demonstrate that methionine has a tissue-specific effect because methionine-supplemented diet induced both chromosomal and DNA damage in peripheral blood while the methionine-deficient diet reduced basal DNA damage in the liver.


Asunto(s)
Inestabilidad Cromosómica/efectos de los fármacos , Metionina/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Sanguíneas/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Dieta , Suplementos Dietéticos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Hígado/efectos de los fármacos , Ratones , Pruebas de Micronúcleos , Homólogo 1 de la Proteína MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética
18.
J Med Food ; 16(3): 268-71, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23444962

RESUMEN

In this study, the ethanolic extract obtained from piquiá pulp was assessed for genotoxicity and oxidative stress by employing the micronucleus test in bone marrow and peripheral blood cells in addition to comet, thiobarbituric-acid-reactive substances (TBARS), and reduced glutathione assays in the liver, kidney, and heart. Additionally, phytochemical analyses were performed to identify and quantify the chemical constituents of the piquiá extract. Wistar rats were treated by gavage with an ethanolic extract from piquiá pulp (75 mg/kg body weight) for 14 days, and 24 h prior to euthanasia, they received an injection of saline or doxorubicin (15 mg/kg body weight, intraperoneally). The results demonstrated that piquiá extract at the tested dose was genotoxic but not mutagenic, and it increased the TBARS levels in the heart. Further studies are required to fully elucidate how the properties of ethanolic extract of piquiá pulp can affect human health.


Asunto(s)
Ericales/efectos adversos , Frutas/efectos adversos , Corazón/efectos de los fármacos , Mutágenos/efectos adversos , Estrés Oxidativo , Extractos Vegetales/efectos adversos , Animales , Bovinos , Ensayo Cometa , Glutatión/metabolismo , Humanos , Masculino , Ratones , Pruebas de Micronúcleos , Miocardio/metabolismo , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
19.
Environ Mol Mutagen ; 53(7): 535-41, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22847942

RESUMEN

Populations in the Amazon are exposed to organic mercury via consumption of contaminated foods. These ethnic groups consume a specific plant seed "annatto" which contains certain carotenoids. The aim of this study was to find out if these compounds (bixin, BIX and norbixin, NOR), protect against DNA-damage caused by the metal. Therefore, rats were treated orally with methylmercury (MeHg) and with the carotenoids under conditions that are relevant to humans. The animals were treated either with MeHg (30 µg/kg/bw/day), BIX (0.1-10 mg/kg/bw/day), NOR (0.01-1.0 mg/kg/bw/day) or combinations of the metal compound and the carotenoids consecutively for 45 days. Subsequently, the glutathione levels (GSH) and the activity of catalase were determined, and DNA-damage was measured in hepatocytes and leukocytes using single cell gel electrophoresis assays. Treatment with the metal alone caused a decrease in the GSH levels (35%) and induced DNA damage, which resulted in increased DNA migration after electrophoresis in liver and blood cells, whereas no effects were seen with the carotenoids alone. When BIX or NOR were given in combination with organic mercury, the intermediate and the highest concentrations of the carotenoids (1.0 and 10.0 mg/kg/bw/day BIX and 0.1 and 1.0 mg/kg/bw/day NOR) protected against DNA-damage. Furthermore, we found with both carotenoids, a moderate increase in the GSH levels in both metal-treated and untreated animals, while the activities of catalase remained unchanged. Our results indicate that consumption of BIX and NOR may protect humans against the adverse health effects caused by exposure to organic mercury.


Asunto(s)
Bixaceae/química , Carotenoides/química , Carotenoides/farmacología , Daño del ADN/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Compuestos de Metilmercurio/toxicidad , Extractos Vegetales/química , Análisis de Varianza , Animales , Carotenoides/administración & dosificación , Catalasa/metabolismo , Ensayo Cometa , Glutatión/metabolismo , Compuestos de Metilmercurio/administración & dosificación , Compuestos de Metilmercurio/sangre , Estructura Molecular , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Wistar
20.
Mutat Res ; 725(1-2): 50-6, 2011 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-21763449

RESUMEN

We investigated the effects of the dietary pigment chlorophyll b (CLb) on cisplatin (cDDP)-induced oxidative stress and DNA damage, using the comet assay in mouse peripheral blood cells and the micronucleus (MN) test in bone marrow and peripheral blood cells. We also tested for thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) in liver and kidney tissues, as well as catalase (CAT) activity and GSH in total blood. CLb (0.2 and 0.5mg/kg b.w.) was administrated by gavage every day for 13 days. On the 14th day of the experiment, 6 mg/kg cDDP or saline was delivered intraperitoneally. Treatment with cDDP led to a significant decrease in DNA migration and an increase in MN frequency in both cell types, bone marrow and peripheral blood cells. In the kidneys of mice treated with cDDP, TBARS levels were increased, whereas GSH levels were depleted in kidney and liver. In mice that were pre-treated with CLb and then treated with cDDP, TBARS levels maintained normal concentrations and GSH did not differ from cDDP group. The improvement of oxidative stress biomarkers after CLb pre-treatment was associated with a decrease in DNA damage, mainly for the highest dose evaluated. Furthermore, CLb also slightly reduced the frequency of chromosomal breakage and micronucleus formation in mouse bone marrow and peripheral blood cells. These results show that pre-treatment with CLb attenuates cDDP-induced oxidative stress, chromosome instability, and lipid peroxidation.


Asunto(s)
Antimutagênicos/farmacología , Clorofila/farmacología , Ensayo Cometa , Pruebas de Micronúcleos , Animales , Antioxidantes/farmacología , Catalasa/sangre , Clorofila/administración & dosificación , Cisplatino/toxicidad , Daño del ADN/efectos de los fármacos , Dieta , Femenino , Glutatión/sangre , Riñón/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA