Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Heart Assoc ; 13(14): e034363, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38979786

RESUMEN

BACKGROUND: Aging-associated left ventricular dysfunction promotes cardiopulmonary fibrogenic remodeling, Group 2 pulmonary hypertension (PH), and right ventricular failure. At the time of diagnosis, cardiac function has declined, and cardiopulmonary fibrosis has often developed. Here, we sought to develop a molecular positron emission tomography (PET)-magnetic resonance imaging (MRI) protocol to detect both cardiopulmonary fibrosis and fibrotic disease activity in a left ventricular dysfunction model. METHODS AND RESULTS: Left ventricular dysfunction was induced by transverse aortic constriction (TAC) in 6-month-old senescence-accelerated prone mice, a subset of mice that received sham surgery. Three weeks after surgery, mice underwent simultaneous PET-MRI at 4.7 T. Collagen-targeted PET and fibrogenesis magnetic resonance (MR) probes were intravenously administered. PET signal was computed as myocardium- or lung-to-muscle ratio. Percent signal intensity increase and Δ lung-to-muscle ratio were computed from the pre-/postinjection magnetic resonance images. Elevated allysine in the heart (P=0.02) and lungs (P=0.17) of TAC mice corresponded to an increase in myocardial magnetic resonance imaging percent signal intensity increase (P<0.0001) and Δlung-to-muscle ratio (P<0.0001). Hydroxyproline in the heart (P<0.0001) and lungs (P<0.01) were elevated in TAC mice, which corresponded to an increase in heart (myocardium-to-muscle ratio, P=0.02) and lung (lung-to-muscle ratio, P<0.001) PET measurements. Pressure-volume loop and echocardiography demonstrated adverse left ventricular remodeling, function, and increased right ventricular systolic pressure in TAC mice. CONCLUSIONS: Administration of collagen-targeted PET and allysine-targeted MR probes led to elevated PET-magnetic resonance imaging signals in the myocardium and lungs of TAC mice. The study demonstrates the potential to detect fibrosis and fibrogenesis in cardiopulmonary disease through a dual molecular PET-magnetic resonance imaging protocol.


Asunto(s)
Modelos Animales de Enfermedad , Fibrosis , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Disfunción Ventricular Izquierda , Animales , Tomografía de Emisión de Positrones/métodos , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo , Imagen por Resonancia Magnética/métodos , Ratones , Miocardio/patología , Miocardio/metabolismo , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/fisiopatología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/etiología , Función Ventricular Izquierda , Masculino , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/fisiopatología , Pulmón/metabolismo , Imagen Multimodal/métodos , Colágeno/metabolismo , Remodelación Ventricular , Lisina/análogos & derivados
2.
Int J Radiat Oncol Biol Phys ; 118(5): 1228-1239, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38072325

RESUMEN

PURPOSE: Radiation-induced lung injury (RILI) is a progressive inflammatory process seen after irradiation for lung cancer. The disease can be insidious, often characterized by acute pneumonitis followed by chronic fibrosis with significant associated morbidity. No therapies are approved for RILI, and accurate disease quantification is a major barrier to improved management. Here, we sought to noninvasively quantify RILI using a molecular imaging probe that specifically targets type 1 collagen in mouse models and patients with confirmed RILI. METHODS AND MATERIALS: Using a murine model of lung radiation, mice were imaged with EP-3533, a type 1 collagen probe, to characterize the development of RILI and to assess disease mitigation after losartan treatment. The human analog probe 68Ga-CBP8, targeting type 1 collagen, was tested on excised human lung tissue containing RILI and was quantified via autoradiography. 68Ga-CBP8 positron emission tomography was used to assess RILI in vivo in 6 human subjects. RESULTS: Murine models demonstrated that probe signal correlated with progressive RILI severity over 6 months. The probe was sensitive to mitigation of RILI by losartan. Excised human lung tissue with RILI had increased binding versus unirradiated control tissue, and 68Ga-CBP8 uptake correlated with collagen proportional area. Human imaging revealed significant 68Ga-CBP8 uptake in areas of RILI and minimal background uptake. CONCLUSIONS: These findings support the ability of a molecular imaging probe targeted at type 1 collagen to detect RILI in preclinical models and human disease, suggesting a role for targeted molecular imaging of collagen in the assessment of RILI.


Asunto(s)
Lesión Pulmonar , Traumatismos por Radiación , Humanos , Animales , Ratones , Lesión Pulmonar/diagnóstico por imagen , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Colágeno Tipo I/metabolismo , Radioisótopos de Galio/metabolismo , Losartán/metabolismo , Pulmón/efectos de la radiación , Traumatismos por Radiación/metabolismo , Colágeno , Imagen Molecular
3.
medRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808864

RESUMEN

Rationale: Radiation-induced lung injury (RILI) is a progressive inflammatory process commonly seen following irradiation for lung cancer. The disease can be insidious, often characterized by acute pneumonitis followed by chronic fibrosis with significant associated morbidity. No therapies are approved for RILI, and accurate disease quantification is a major barrier to improved management. Objective: To noninvasively quantify RILI, utilizing a molecular imaging probe that specifically targets type 1 collagen in mouse models and patients with confirmed RILI. Methods: Using a murine model of lung radiation, mice were imaged with EP-3533, a type 1 collagen probe to characterize the development of RILI and to assess disease mitigation following losartan treatment. The human analog probe targeted against type 1 collagen, 68Ga-CBP8, was tested on excised human lung tissue containing RILI and quantified via autoradiography. Finally, 68Ga-CBP8 PET was used to assess RILI in vivo in six human subjects. Results: Murine models demonstrated that probe signal correlated with progressive RILI severity over six-months. The probe was sensitive to mitigation of RILI by losartan. Excised human lung tissue with RILI had increased binding vs unirradiated control tissue and 68Ga-CBP8 uptake correlated with collagen proportional area. Human imaging revealed significant 68Ga-CBP8 uptake in areas of RILI and minimal background uptake. Conclusions: These findings support the ability of a molecular imaging probe targeted at type 1 collagen to detect RILI in preclinical models and human disease, suggesting a role for targeted molecular imaging of collagen in the assessment of RILI.Clinical trial registered with www.clinicaltrials.gov (NCT04485286, NCT03535545).

4.
Sci Transl Med ; 14(663): eabq6297, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130015

RESUMEN

Liver fibrosis plays a critical role in the evolution of most chronic liver diseases and is characterized by a buildup of extracellular matrix, which can progress to cirrhosis, hepatocellular carcinoma, liver failure, or death. Now, there are no noninvasive methods available to accurately assess disease activity (fibrogenesis) to sensitively detect early onset of fibrosis or to detect early response to treatment. Here, we hypothesized that extracellular allysine aldehyde (LysAld) pairs formed by collagen oxidation during active fibrosis could be a target for assessing fibrogenesis with a molecular probe. We showed that molecular magnetic resonance imaging (MRI) using an extracellular probe targeting these LysAld pairs acts as a noninvasive biomarker of fibrogenesis and demonstrated its high sensitivity and specificity in detecting fibrogenesis in toxin- and dietary-induced mouse models, a cholestasis rat model of liver fibrogenesis, and in human fibrotic liver tissues. Quantitative molecular MRI was highly correlated with fibrogenesis markers and enabled noninvasive detection of early onset fibrosis and response to antifibrotic treatment, showing high potential for clinical translation.


Asunto(s)
Aldehídos , Hígado , Animales , Biomarcadores , Colágeno , Fibrosis , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/patología , Imagen por Resonancia Magnética , Ratones , Sondas Moleculares , Ratas
5.
JACS Au ; 1(6): 865-878, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34240081

RESUMEN

Efforts directed at curtailing the bioavailability of intracellular iron could lead to the development of broad-spectrum anticancer drugs given the metal's role in cancer proliferation and metastasis. Human ribonucleotide reductase (RNR), the key enzyme responsible for synthesizing the building blocks of DNA replication and repair, depends on Fe binding at its R2 subunit to activate the catalytic R1 subunit. This work explores an intracellular iron chelator transmetalative approach to inhibit RNR using the titanium(IV) chemical transferrin mimetic (cTfm) compounds Ti(HBED) and Ti(Deferasirox)2. Whole-cell EPR studies reveal that the compounds can effectively attenuate RNR activity though seemingly causing different changes to the labile iron pool that may account for differences in their potency against cells. Studies of Ti(IV) interactions with the adenosine nucleotide family at pH 7.4 reveal strong metal binding and extensive phosphate hydrolysis, which suggest the capacity of the metal to disturb the nucleotide substrate pool of the RNR enzyme. By decreasing intracellular Fe bioavailability and altering the nucleotide substrate pool, the Ti cTfm compounds could inhibit the activity of the R1 and R2 subunits of RNR. The compounds arrest the cell cycle in the S phase, indicating suppressed DNA replication, and induce apoptotic cell death. Cotreatment cell viability studies with cisplatin and Ti(Deferasirox)2 reveal a promising synergism between the compounds that is likely owed to their distinct but complementary effect on DNA replication.

6.
Invest Radiol ; 56(1): 20-34, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33074931

RESUMEN

Molecular magnetic resonance (MR) imaging utilizes molecular probes to provide added biochemical or cellular information to what can already be achieved with anatomical and functional MR imaging. This review provides an overview of molecular MR and focuses specifically on molecular MR contrast agents that provide contrast by shortening the T1 time. We describe the requirements for a successful molecular MR contrast agent and the challenges for clinical translation. The review highlights work from the last 5 years and places an emphasis on new contrast agents that have been validated in multiple preclinical models. Applications of molecular MR include imaging of inflammation, fibrosis, fibrogenesis, thromboembolic disease, and cancers. Molecular MR is positioned to move beyond detection of disease to the quantitative staging of disease and measurement of treatment response.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos
7.
Chem Sci ; 11(1): 224-231, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728411

RESUMEN

Pulmonary fibrosis (PF) is the pathologic accumulation of extracellular matrix components in lung tissue that result in scarring following chronic lung injury. PF is typically diagnosed by high resolution computed tomography (HRCT) and/or invasive biopsy. However, HRCT cannot distinguish old injury from active fibrogenesis. We previously demonstrated that allysine residues on oxidized collagen represent an abundant target during lung fibrogenesis, and that magnetic resonance imaging (MRI) with a small-molecule, gadolinium-containing probe, Gd-Hyd, could specifically detect and stage fibrogenesis in a mouse model. In this work, we present an improved probe, Gd-CHyd, featuring an N,N-dialkyl hydrazine which has an order of magnitude both greater reactivity and affinity for aldehydes. In a paired study in mice with bleomycin induced lung injury we show that the improved reactivity and affinity of Gd-CHyd results in significantly higher lung-to-liver contrast, e.g. 77% higher at 45 min post injection, and slower lung clearance than Gd-Hyd. Gd-CHyd enhanced MRI is >60-fold higher in bleomycin injured mouse lungs compared to uninjured mice. Collectively, our data indicate that enhancing hydrazine reactivity and affinity towards allysine is an effective strategy to significantly improve molecular MRI probes for lung fibrogenesis.

8.
Radiology ; 296(1): 67-75, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32343209

RESUMEN

Background Liver biopsy is the reference standard to diagnose nonalcoholic steatohepatitis (NASH) but is invasive with potential complications. Purpose To evaluate molecular MRI with type 1 collagen-specific probe EP-3533 and allysine-targeted fibrogenesis probe Gd-Hyd, MR elastography, and native T1 to characterize fibrosis and to assess treatment response in a rat model of NASH. Materials and Methods MRI was performed prospectively (June-November 2018) in six groups of male Wistar rats (a) age- and (b) weight-matched animals received standard chow (n = 12 per group); (c) received choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) for 6 weeks or (d) 9 weeks (n = 8 per group); (e) were fed 6 weeks of CDAHFD and switched to standard chow for 3 weeks (n = 12); (f) were fed CDAHFD for 9 weeks with daily treatment of elafibranor beginning at week 6 (n = 14). Differences in imaging measurements and tissue analyses among groups were tested with one-way analysis of variance. The ability of each imaging measurement to stage fibrosis was quantified by using area under the receiver operating characteristic curve (AUC) with quantitative digital pathology (collagen proportionate area [CPA]) as reference standard. Optimal cutoff values for distinguishing advanced fibrosis were used to assess treatment response. Results AUC for distinguishing fibrotic (CPA >4.8%) from nonfibrotic (CPA ≤4.8%) livers was 0.95 (95% confidence interval [CI]: 0.91, 1.00) for EP-3533, followed by native T1, Gd-Hyd, and MR elastography with AUCs of 0.90 (95% CI: 0.83, 0.98), 0.84 (95% CI: 0.74, 0.95), and 0.65 (95% CI: 0.51, 0.79), respectively. AUCs for discriminating advanced fibrosis (CPA >10.3%) were 0.86 (95% CI: 0.76, 0.97), 0.96 (95% CI: 0.90, 1.01), 0.84 (95% CI: 0.70, 0.98), and 0.74 (95% CI: 0.63, 0.86) for EP-3533, Gd-Hyd, MR elastography, and native T1, respectively. Gd-Hyd MRI had the highest accuracy (24 of 26, 92%; 95% CI: 75%, 99%) in identifying responders and nonresponders in the treated groups compared with MR elastography (23 of 26, 88%; 95% CI: 70%, 98%), EP-3533 (20 of 26, 77%; 95% CI: 56%, 91%), and native T1 (14 of 26, 54%; 95% CI: 33%, 73%). Conclusion Collagen-targeted molecular MRI most accurately detected early onset of fibrosis, whereas the fibrogenesis probe Gd-Hyd proved most accurate for detecting treatment response. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/terapia , Imagen por Resonancia Magnética/métodos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/terapia , Animales , Chalconas/uso terapéutico , Dieta/métodos , Modelos Animales de Enfermedad , Hígado/diagnóstico por imagen , Cirrosis Hepática/etiología , Masculino , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Propionatos/uso terapéutico , Estudios Prospectivos , Ratas , Ratas Wistar
9.
Cancers (Basel) ; 12(3)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106629

RESUMEN

Accumulating evidence suggests that iron homeostasis is disturbed in tumors. We aimed at clarifying the distribution of iron in renal cell carcinoma (RCC). Considering the pivotal role of macrophages for iron homeostasis and their association with poor clinical outcome, we investigated the role of macrophage-secreted iron for tumor progression by applying a novel chelation approach. We applied flow cytometry and multiplex-immunohistochemistry to detect iron-dependent markers and analyzed iron distribution with atomic absorption spectrometry in patients diagnosed with RCC. We further analyzed the functional significance of iron by applying a novel extracellular chelator using RCC cell lines as well as patient-derived primary cells. The expression of iron-regulated genes was significantly elevated in tumors compared to adjacent healthy tissue. Iron retention was detected in tumor cells, whereas tumor-associated macrophages showed an iron-release phenotype accompanied by enhanced expression of ferroportin. We found increased iron amounts in extracellular fluids, which in turn stimulated tumor cell proliferation and migration. In vitro, macrophage-derived iron showed pro-tumor functions, whereas application of an extracellular chelator blocked these effects. Our study provides new insights in iron distribution and iron-handling in RCC. Chelators that specifically scavenge iron in the extracellular space confirmed the importance of macrophage-secreted iron in promoting tumor growth.

10.
PLoS One ; 11(11): e0166164, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27806101

RESUMEN

A growing body of evidence suggests that macrophage polarization dictates the expression of iron-regulated genes. Polarization towards iron sequestration depletes the microenvironment, whereby extracellular pathogen growth is limited and inflammation is fostered. In contrast, iron release contributes to cell proliferation, which is important for tissue regeneration. Moreover, macrophages constitute a major component of the infiltrates in most solid tumors. Considering the pivotal role of macrophages for iron homeostasis and their presence in association with poor clinical prognosis in tumors, we approached the possibility to target macrophages with intracellular iron chelators. Analyzing the expression of iron-regulated genes at mRNA and protein level in primary human macrophages, we found that the iron-release phenotype is a characteristic of polarized macrophages that, in turn, stimulate tumor cell growth and progression. The application of the intracellular iron chelator (TC3-S)2 shifted the macrophage phenotype from iron release towards sequestration, as determined by the iron-gene profile and atomic absorption spectroscopy (AAS). Moreover, whereas the addition of macrophage supernatants to tumor cells induced tumor growth and metastatic behavior, the supernatant of chelator-treated macrophages reversed this effect. Iron chelators demonstrated potent anti-neoplastic properties in a number of cancers, both in cell culture and in clinical trials. Our results suggest that iron chelation could affect not only cancer cells but also the tumor microenvironment by altering the iron-release phenotype of tumor-associated macrophages (TAMs). The study of iron chelators in conjunction with the effect of TAMs on tumor growth could lead to an improved understanding of the role of iron in cancer biology and to novel therapeutic avenues for iron chelation approaches.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Quelantes del Hierro/farmacología , Hierro/metabolismo , Macrófagos/citología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis , Humanos , Células MCF-7 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Fenotipo , Espectrofotometría Atómica , Microambiente Tumoral/efectos de los fármacos
11.
Bioconjug Chem ; 27(8): 1807-12, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27471913

RESUMEN

The implication of iron in the pathophysiology of colorectal cancer is documented at both the biochemical and epidemiological levels. Iron chelators are therefore useful molecular tools for the study and potential treatment of this type of cancer characterized by high incidence and mortality rates. We report a novel prochelation strategy that utilizes a disulfide redox switch to connect a thiosemicarbazone iron-binding unit with carbohydrate moieties targeting the increased expression of glucose transporters in colorectal cancer cells. We synthesized three glycoconjugates (GA2TC4, G6TC4, and M6TC4) with different connectivity and/or carbohydrate moieties, as well as an aglycone analog (ATC4). The sugar conjugates present increased solubility in neutral aqueous solutions, and the ester-linked conjugates M6TC4 and G6TC4 compete as effectively as d-glucose for transporter-mediated cellular uptake. The glycoconjugates show improved selectivity compared to the aglycone analog and are 6-11 times more toxic in Caco-2 colorectal adenocarcinoma cells than in normal CCD18-co colon fibroblasts.


Asunto(s)
Neoplasias del Colon/patología , Glicoconjugados/química , Glicoconjugados/metabolismo , Quelantes del Hierro/química , Hierro/metabolismo , Tiosemicarbazonas/química , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Glicoconjugados/farmacología , Humanos , Terapia Molecular Dirigida
12.
Supramol Chem ; 28(1-2): 108-116, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-34177214

RESUMEN

Sirtinol, a Schiff base derived from 2-hydroxy-1-naphthaldehyde, is an inhibitor of sirtuin proteins, a family of deacetylases active in gene regulation and relevant to the study of cancer growth. The formation of copper(II) and zinc(II) complexes of sirtinol is investigated by spectroscopic and structural methods. The molecular structure of this protein inhibitor allows for coordination of first-row transition metals in both tridentate and bidentate fashion. In addition, assays in cultured breast cancer cells reveal that CuII(sirtinol-H)2 and previously reported FeIII(sirtinol-H)(NO3)2 present enhanced cytotoxicity when compared to the free ligand, and that the ferric complex causes an increase in intracellular oxidative stress. Transition metal coordination in the biological milieu could therefore contribute additional effects to the biological profile of sirtinol.

13.
Metallomics ; 6(10): 1905-12, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25100578

RESUMEN

Iron scavengers (chelators) offer therapeutic opportunities in anticancer drug design by targeting the increased demand for iron in cancer cells as compared to normal cells. Prochelation approaches are expected to avoid systemic iron depletion as chelators are liberated under specific intracellular conditions. In the strategy described herein, a disulfide linkage is employed as a redox-directed switch within the binding unit of an antiproliferative thiosemicarbazone prochelator, which is activated for iron coordination following reduction to the thiolate chelator. In glutathione redox buffer, this reduction event occurs at physiological concentrations and half-cell potentials. Consistent with concurrent reduction and activation, higher intracellular thiol concentrations increase cell susceptibility to prochelator toxicity in cultured cancer cells. The reduction of the disulfide switch and intracellular iron chelation are confirmed in cell-based assays using calcein as a fluorescent probe for paramagnetic ions. The resulting low-spin Fe(III) complex is identified in intact Jurkat cells by EPR spectroscopy measurements, which also document a decreased concentration of active ribonucleotide reductase following exposure to the prochelator. Cell viability and fluorescence-based assays show that the iron complex presents low cytotoxicity and does not participate in intracellular redox chemistry, indicating that this antiproliferative chelation strategy does not rely on the generation of reactive oxygen species.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Disulfuros/química , Quelantes del Hierro/química , Quelantes del Hierro/farmacología , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Hierro/metabolismo , Células Jurkat , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA