Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Dev Biol ; 472: 30-37, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33444612

RESUMEN

Zebrafish have a remarkable ability to regenerate the myocardium after injury by proliferation of pre-existing cardiomyocytes. Fibroblast growth factor (FGF) signaling is known to play a critical role in zebrafish heart regeneration through promotion of neovascularization of the regenerating myocardium. Here, we define an additional function of FGF signaling in the zebrafish myocardium after injury. We find that FGF signaling is active in a small fraction of cardiomyocytes before injury, and that the number of FGF signaling-positive cardiomyocytes increases after amputation-induced injury. We show that ERK phosphorylation is prominent in endothelial cells, but not in cardiomyocytes. In contrast, basal levels of phospho-AKT positive cardiomyocytes are detected before injury, and the ratio of phosphorylated AKT-positive cardiomyocytes increases after injury, indicating a role of AKT signaling in cardiomyocytes following injury. Inhibition of FGF signaling reduced the number of phosphorylated AKT-positive cardiomyocytes and increased cardiomyocyte death without injury. Heart injury did not induce cardiomyocyte death; however, heart injury in combination with inhibition of FGF signaling caused significant increase in cardiomyocyte death. Pharmacological inhibition of AKT signaling after heart injury also caused increased cardiomyocyte death. Our data support the idea that FGF-AKT signaling-dependent cardiomyocyte survival is necessary for subsequent heart regeneration.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cromonas/farmacología , Factores de Crecimiento de Fibroblastos/genética , Lesiones Cardíacas/metabolismo , Morfolinas/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Regeneración/efectos de los fármacos
2.
Genes Cells ; 25(8): 582-592, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32516841

RESUMEN

Collective cell migration, in which cells assemble and move together, is an essential process in embryonic development, wound healing and cancer metastasis. Chemokine signaling guides cell assemblies to their destinations. In zebrafish posterior lateral line primordium (PLLP), a model system for collective cell migration, it has been proposed that the chemokine ligand Cxcl12a secreted from muscle pioneer cells (MPs) and muscle fast fibers (MFFs), which are distributed along with the horizontal midline, binds to the receptor Cxcr4b in PLLP and that Cxcl12a-Cxcr4b signaling guides the anterior-to-posterior migration of PLLP along the horizontal midline. However, how the surrounding tissues affect PLLP migration remains to be elucidated. Here, we investigated the relationship between the PLLP and the surrounding tissues and found that a furrow between the dorsal and ventral myotomes is generated by Sonic hedgehog (Shh) signaling-dependent MP and MFF differentiation and that the PLLP migrates in this furrow. When transient inhibition of Shh signaling impaired both the furrow formation and differentiation of cxcl12a-expressing MPs/MFFs, directional PLLP migration was severely perturbed. Furthermore, when differentiated MPs and MFFs were ablated by femtosecond laser irradiations, the furrow remained and PLLP migration was relatively unaffected. These results suggest that the furrow formation between the dorsal and ventral myotomes is associated with the migratory behavior of PLLP.


Asunto(s)
Movimiento Celular/fisiología , Sistema de la Línea Lateral/embriología , Pez Cebra/embriología , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Quimiocina CXCL12/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
3.
Curr Biol ; 30(4): 670-681.e6, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32004455

RESUMEN

When oncogenic transformation or apoptosis occurs within epithelia, the harmful or dead cells are apically extruded from tissues to maintain epithelial homeostasis. However, the underlying molecular mechanism still remains elusive. In this study, we first show, using mammalian cultured epithelial cells and zebrafish embryos, that prior to apical extrusion of RasV12-transformed cells, calcium wave occurs from the transformed cell and propagates across the surrounding cells. The calcium wave then triggers and facilitates the process of extrusion. IP3 receptor, gap junction, and mechanosensitive calcium channel TRPC1 are involved in calcium wave. Calcium wave induces the polarized movement of the surrounding cells toward the extruding transformed cells. Furthermore, calcium wave facilitates apical extrusion, at least partly, by inducing actin rearrangement in the surrounding cells. Moreover, comparable calcium propagation also promotes apical extrusion of apoptotic cells. Thus, calcium wave is an evolutionarily conserved, general regulatory mechanism of cell extrusion.


Asunto(s)
Señalización del Calcio/fisiología , Transformación Celular Neoplásica/metabolismo , Animales , Perros , Embrión no Mamífero , Células de Riñón Canino Madin Darby , Pez Cebra
4.
PLoS Genet ; 12(6): e1006138, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27352137

RESUMEN

Gli3 is a major regulator of Hedgehog signaling during limb development. In the anterior mesenchyme, GLI3 is proteolytically processed into GLI3R, a truncated repressor form that inhibits Hedgehog signaling. Although numerous studies have identified mechanisms that regulate Gli3 function in vitro, it is not completely understood how Gli3 function is regulated in vivo. In this study, we show a novel mechanism of regulation of GLI3R activities in limb buds by Gata6, a member of the GATA transcription factor family. We show that conditional inactivation of Gata6 prior to limb outgrowth by the Tcre deleter causes preaxial polydactyly, the formation of an anterior extra digit, in hindlimbs. A recent study suggested that Gata6 represses Shh transcription in hindlimb buds. However, we found that ectopic Hedgehog signaling precedes ectopic Shh expression. In conjunction, we observed Gata6 and Gli3 genetically interact, and compound heterozygous mutants develop preaxial polydactyly without ectopic Shh expression, indicating an additional prior mechanism to prevent polydactyly. These results support the idea that Gata6 possesses dual roles during limb development: enhancement of Gli3 repressor function to repress Hedgehog signaling in the anterior limb bud, and negative regulation of Shh expression. Our in vitro and in vivo studies identified that GATA6 physically interacts with GLI3R to facilitate nuclear localization of GLI3R and repressor activities of GLI3R. Both the genetic and biochemical data elucidates a novel mechanism by Gata6 to regulate GLI3R activities in the anterior limb progenitor cells to prevent polydactyly and attain proper development of the mammalian autopod.


Asunto(s)
Extremidades/crecimiento & desarrollo , Factor de Transcripción GATA6/genética , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Transcripción de Tipo Kruppel/genética , Proteínas del Tejido Nervioso/genética , Organogénesis/genética , Células Madre/metabolismo , Animales , Tipificación del Cuerpo/genética , Línea Celular , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Esbozos de los Miembros/crecimiento & desarrollo , Esbozos de los Miembros/metabolismo , Ratones , Células 3T3 NIH , Polidactilia/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Proteína Gli3 con Dedos de Zinc
5.
Cell Rep ; 13(5): 915-23, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26565905

RESUMEN

MicroRNAs (miRNAs) are known to regulate critical developmental stages during embryogenesis. Here, we defined an Etv2-miR-130a cascade that regulates mesodermal specification and determination. Ablation of Dicer in the Etv2-expressing precursors resulted in altered mesodermal lineages and embryonic lethality. We identified miR-130a as a direct target of Etv2 and demonstrated its role in the segregation of bipotent hemato-endothelial progenitors toward the endothelial lineage. Gain-of-function experiments demonstrated that miR-130a promoted the endothelial program at the expense of the cardiac program without impacting the hematopoietic lineages. In contrast, CRISPR/Cas9-mediated knockout of miR-130a demonstrated a reduction of the endothelial program without affecting hematopoiesis. Mechanistically, miR-130a directly suppressed Pdgfra expression and promoted the endothelial program by blocking Pdgfra signaling. Inhibition or activation of Pdgfra signaling phenocopied the miR-130a overexpression and knockout phenotypes, respectively. In summary, we report the function of a miRNA that specifically promotes the divergence of the hemato-endothelial progenitor to the endothelial lineage.


Asunto(s)
Linaje de la Célula , Mesodermo/citología , MicroARNs/genética , Factores de Transcripción/genética , Animales , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Hematopoyesis , Mesodermo/metabolismo , Ratones , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(16): 5075-80, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848055

RESUMEN

Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.


Asunto(s)
Huesos/embriología , Proteínas de Unión al ADN/metabolismo , Miembro Anterior/embriología , Miembro Posterior/embriología , Factores de Transcripción de Tipo Kruppel/metabolismo , Esbozos de los Miembros/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Tipificación del Cuerpo , Huesos/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/genética , Epistasis Genética , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Miembro Posterior/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Proteína Gli3 con Dedos de Zinc
7.
Biochim Biophys Acta ; 1853(1): 27-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25305574

RESUMEN

Proliferation analysis is one of the basic approaches to characterize various cell types. In conventional cell proliferation assays, the same sample cannot be observed over time, nor can a specific group within a heterogeneous population of cells, for example, cancerous cells, be analyzed separately. To overcome these limitations, we established an optical labeling-based proliferation assay system with the Kaede protein, whose fluorescence can be irreversibly photo converted from green to red by irradiation. After a single non-toxic photoconversion event, the intensity of red fluorescence in each cell is reduced by cell division. From this, we developed a simple method to quantify cell proliferation by monitoring reduction of red fluorescence over time. This study shows that the optical labeling-based proliferation assay is a viable novel method to analyze cell proliferation, and could enhance our understanding of mechanisms regulating cell proliferation machinery. We used this newly established system to analyze the functions of secreted interleukin-6 (IL-6) in cancer cell proliferation, which had not been fully characterized. Reduction in proliferation was observed following IL-6 knockdown. However, after co-culturing with IL-6-expressing cells, the proliferation of Kaede-labeled IL-6-knockdown cells was restored. These data indicate that in basal-like breast cancer cells, IL-6 exhibits a paracrine effect to positively regulate cell proliferation. Our results thus demonstrate that cancer cells can secrete signaling molecules, such as IL-6, to support the proliferation of other cancer cells.


Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular , Interleucina-6/fisiología , Comunicación Paracrina , Línea Celular Tumoral , Femenino , Humanos , Proteínas Luminiscentes , Comunicación Paracrina/fisiología
8.
Nature ; 512(7512): 82-6, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25043044

RESUMEN

'Gain' of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers and is associated with poor prognosis. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent 'gene desert' of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copy of either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Amplificación de Genes/genética , Dosificación de Gen/genética , Genes myc/genética , Proteína Oncogénica p55(v-myc)/genética , ARN Largo no Codificante/genética , Animales , Transformación Celular Neoplásica , Cromosomas Humanos Par 8/genética , Modelos Animales de Enfermedad , Células HCT116 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteína Oncogénica p55(v-myc)/metabolismo , Fenotipo
9.
Dev Biol ; 387(1): 37-48, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24424161

RESUMEN

Isl1 expression marks progenitor populations in developing embryos. In this study, we investigated the contribution of Isl1-expressing cells that utilize the ß-catenin pathway to skeletal development. Inactivation of ß-catenin in Isl1-expressing cells caused agenesis of the hindlimb skeleton and absence of the lower jaw (agnathia). In the hindlimb, Isl1-lineages broadly contributed to the mesenchyme; however, deletion of ß-catenin in the Isl1-lineage caused cell death only in a discrete posterior domain of nascent hindlimb bud mesenchyme. We found that the loss of posterior mesenchyme, which gives rise to Shh-expressing posterior organizer tissue, caused loss of posterior gene expression and failure to expand chondrogenic precursor cells, leading to severe truncation of the hindlimb. In facial tissues, Isl1-expressing cells broadly contributed to facial epithelium. We found reduced nuclear ß-catenin accumulation and loss of Fgf8 expression in mandibular epithelium of Isl1(-/-) embryos. Inactivating ß-catenin in Isl1-expressing epithelium caused both loss of epithelial Fgf8 expression and death of mesenchymal cells in the mandibular arch without affecting epithelial proliferation and survival. These results suggest a Isl1→ß-catenin→Fgf8 pathway that regulates mesenchymal survival and development of the lower jaw in the mandibular epithelium. By contrast, activating ß-catenin signaling in Isl1-lineages caused activation of Fgf8 broadly in facial epithelium. Our results provide evidence that, despite its broad contribution to hindlimb mesenchyme and facial epithelium, the Isl1-ß-catenin pathway regulates skeletal development of the hindlimb and lower jaw through discrete populations of cells that give rise to Shh-expressing posterior hindlimb mesenchyme and Fgf8-expressing mandibular epithelium.


Asunto(s)
Miembro Posterior/embriología , Anomalías Maxilomandibulares/embriología , Proteínas con Homeodominio LIM/metabolismo , Osteogénesis/genética , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Región Branquial/embriología , Linaje de la Célula/genética , Proliferación Celular , Supervivencia Celular , Regulación hacia Abajo , Fosfatasa 6 de Especificidad Dual/biosíntesis , Embrión de Mamíferos/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Factor 8 de Crecimiento de Fibroblastos/biosíntesis , Factor 8 de Crecimiento de Fibroblastos/deficiencia , Factor 8 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Miembro Posterior/anomalías , Proteínas de Homeodominio/biosíntesis , Anomalías Maxilomandibulares/genética , Factores de Transcripción de Tipo Kruppel/biosíntesis , Proteínas con Homeodominio LIM/genética , Mandíbula/embriología , Mesodermo/embriología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/biosíntesis , Transducción de Señal/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Regulación hacia Arriba , Proteína Gli3 con Dedos de Zinc , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA