Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Mol Biol Rep ; 49(6): 5303-5313, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34812999

RESUMEN

BACKGROUND: Cd accumulation in plant cells results in dramatic problems including oxidative stress and inhibition of vital enzymes. It also affects mineral uptakes by disrupting membrane permeability. Interaction among Cd and other plant nutrient elements changes the nutritional contents of crops and reduces their yield. METHODS AND RESULTS: In the present study, Cd stress in Brachypodium distachyon led to the upregulation of some heavy metal transport genes (influx or efflux) encoding cation-efflux proteins, heavy metal-associated proteins and NRAMP proteins. The Arabidopsis orthologs of the differentially expressed B. distachyon genes (DEGs) under Cd toxicity were identified, which exhibited Bradi4g26905 was an ortholog of AtALY1-2. Detailed co-expression network and gene ontology analyses found the potential involvement of the mRNA surveillance pathway in Cd tolerance in B. distachyon. These genes were shown to be downregulated by sulfur (S) deficiency. CONCLUSIONS: This is the first transcriptomic study investigating the effect of Cd toxicity in B. distachyon, a model plant for genomic studies in Poaceae (Gramineae) species. The results are expected to provide valuable information for more comprehensive research related to heavy metal toxicity in plants.


Asunto(s)
Arabidopsis , Brachypodium , Arabidopsis/genética , Brachypodium/genética , Brachypodium/metabolismo , Cadmio/farmacología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/metabolismo , Estrés Fisiológico/genética
2.
BMC Microbiol ; 18(Suppl 1): 169, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470198

RESUMEN

BACKGROUND: Tsetse flies (Diptera, Glossinidae) display unique reproductive biology traits. Females reproduce through adenotrophic viviparity, nourishing the growing larva into their modified uterus until parturition. Males transfer their sperm and seminal fluid, produced by both testes and male accessory glands, in a spermatophore capsule transiently formed within the female reproductive tract upon mating. Both sexes are obligate blood feeders and have evolved tight relationships with endosymbionts, already shown to provide essential nutrients lacking in their diet. However, the partnership between tsetse and its symbionts has so far been investigated, at the molecular, genomic and metabolomics level, only in females, whereas the roles of microbiota in male reproduction are still unexplored. RESULTS: Here we begin unravelling the impact of microbiota on Glossina m. morsitans (G. morsitans) male reproductive biology by generating transcriptomes from the reproductive tissues of males deprived of their endosymbionts (aposymbiotic) via maternal antibiotic treatment and dietary supplementation. We then compared the transcriptional profiles of genes expressed in the male reproductive tract of normal and these aposymbiotic flies. We showed that microbiota removal impacts several male reproductive genes by depressing the activity of genes in the male accessory glands (MAGs), including sequences encoding seminal fluid proteins, and increasing expression of genes in the testes. In the MAGs, in particular, the expression of genes related to mating, immunity and seminal fluid components' synthesis is reduced. In the testes, the absence of symbionts activates genes involved in the metabolic apparatus at the basis of male reproduction, including sperm production, motility and function. CONCLUSIONS: Our findings mirrored the complementary roles male accessory glands and testes play in supporting male reproduction and open new avenues for disentangling the interplay between male insects and endosymbionts. From an applied perspective, unravelling the metabolic and functional relationships between tsetse symbionts and male reproductive physiology will provide fundamental information useful to understanding the biology underlying improved male reproductive success in tsetse. This information is of particular importance in the context of tsetse population control via Sterile Insect Technique (SIT) and its impact on trypanosomiasis transmission.


Asunto(s)
Microbiota , Simbiosis , Moscas Tse-Tse/genética , Moscas Tse-Tse/microbiología , Animales , Femenino , Control de Insectos , Masculino , Reproducción/genética , Factores Sexuales , Testículo , Transcriptoma
3.
Proc Biol Sci ; 284(1857)2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659447

RESUMEN

Insects with restricted diets rely on obligate microbes to fulfil nutritional requirements essential for biological function. Tsetse flies, vectors of African trypanosome parasites, feed exclusively on vertebrate blood and harbour the obligate endosymbiont Wigglesworthia glossinidia. Without Wigglesworthia, tsetse are unable to reproduce. These symbionts are sheltered within specialized cells (bacteriocytes) that form the midgut-associated bacteriome organ. To decipher the core functions of this symbiosis essential for tsetse's survival, we performed dual-RNA-seq analysis of the bacteriome, coupled with metabolomic analysis of bacteriome and haemolymph collected from normal and symbiont-cured (sterile) females. Bacteriocytes produce immune regulatory peptidoglycan recognition protein (pgrp-lb) that protects Wigglesworthia, and a multivitamin transporter (smvt) that can aid in nutrient dissemination. Wigglesworthia overexpress a molecular chaperone (GroEL) to augment their translational/transport machinery and biosynthesize an abundance of B vitamins (specifically B1-, B2-, B3- and B6-associated metabolites) to supplement the host's nutritionally deficient diet. The absence of Wigglesworthia's contributions disrupts multiple metabolic pathways impacting carbohydrate and amino acid metabolism. These disruptions affect the dependent downstream processes of nucleotide biosynthesis and metabolism and biosynthesis of S-adenosyl methionine (SAM), an essential cofactor. This holistic fundamental knowledge of the symbiotic dialogue highlights new biological targets for the development of innovative vector control methods.


Asunto(s)
Metaboloma , Simbiosis , Transcriptoma , Moscas Tse-Tse/microbiología , Wigglesworthia/metabolismo , Aminoácidos/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Chaperonina 60/metabolismo , Femenino , Análisis de Secuencia de ARN , Moscas Tse-Tse/metabolismo , Complejo Vitamínico B/biosíntesis
4.
Plant J ; 80(1): 27-39, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25041272

RESUMEN

Eukaryotic gene expression is both promoted and inhibited by the reversible phosphorylation of the C-terminal domain of RNA polymerase II (pol II CTD). More than 20 Arabidopsis genes encode CTD phosphatase homologs, including four CTD phosphatase-like (CPL) family members. Although in vitro CTD phosphatase activity has been established for some CPLs, none have been shown to be involved in the phosphoregulation of pol II in vivo. Here we report that CPL4 is a CTD phosphatase essential for the viability of Arabidopsis thaliana. Mass spectrometry analysis identified the pol II subunits RPB1, RPB2 and RPB3 in the affinity-purified CPL4 complex. CPL4 dephosphorylates both Ser2- and Ser5-PO(4) of the CTD in vitro, with a preference for Ser2-PO(4). Arabidopsis plants overexpressing CPL4 accumulated hypophosphorylated pol II, whereas RNA interference-mediated silencing of CPL4 promoted hyperphosphorylation of pol II. A D128A mutation in the conserved DXDXT motif of the CPL4 catalytic domain resulted in a dominant negative form of CPL4, the overexpression of which inhibited transgene expression in transient assays. Inhibition was abolished by truncation of the phosphoprotein-binding Breast Cancer 1 C-terminal domain of CPL4, suggesting that both catalytic function and protein-protein interaction are essential for CPL4-mediated regulation of gene expression. We were unable to recover a homozygous cpl4 mutant, probably due to the zygotic lethality of this mutation. The reduction in CPL4 levels in CPL4(RNAi) plants increased transcript levels of a suite of herbicide/xenobiotic-responsive genes and improved herbicide tolerance, thus suggesting an additional role for CPL4 as a negative regulator of the xenobiotic detoxification pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Estrés Fisiológico , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Perfilación de la Expresión Génica , Herbicidas/toxicidad , Calor , Datos de Secuencia Molecular , Mutación Missense , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/fisiología , Transcripción Genética , Xenobióticos/toxicidad
5.
Plant Signal Behav ; 8(5): e24120, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23455022

RESUMEN

Transcriptional and post-transcriptional responses to external iron (Fe) availability are essential for the cellular Fe homeostasis. Fe deficiency strongly induces Fe utilization-related gene expression; however, little is known about the early Fe signaling that regulates expression of a central transcription factor FIT. In Arabidopsis, mutations in RNA polymerase II CTD-phosphatase-like 1 (CPL1) enhance the expression of Fe utilization-related genes including FIT under Fe deficiency. Fe content is significantly increased in the roots and decreased in the shoots of cpl1-2 plants, and root growth of the cpl1-2 mutant shows higher tolerance to Fe deficiency and to toxicity of cadmium (Cd). The cpl1-2 plants accumulate more Cd in the shoots, suggesting that Cd toxicity in the cpl1-2 roots is circumvented by the transport of excess Cd to the shoots. Here we show data suggesting that the root-to-shoot translocation of Cd in cpl1-2 is mediated by yet uncharacterized Cd transport mechanisms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cadmio/toxicidad , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Plant Physiol ; 161(1): 330-45, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23144187

RESUMEN

The expression of genes that control iron (Fe) uptake and distribution (i.e. Fe utilization-related genes) is tightly regulated. Fe deficiency strongly induces Fe utilization-related gene expression; however, little is known about the mechanisms that regulate this response in plants. Transcriptome analysis of an Arabidopsis (Arabidopsis thaliana) mutant defective in RNA polymerase II C-terminal domain-phosphatase-like1 (CPL1) revealed significant up-regulation of Fe utilization-related genes (e.g. IRON-REGULATED TRANSPORTER1), suggesting the importance of RNA metabolism in Fe signaling. An analysis using multiple cpl1 alleles established that cpl1 mutations enhanced specific transcriptional responses to low Fe availability. Changes in protein level were less prominent than those in transcript level, indicating that cpl1-2 mainly affects the Fe deficiency response at the transcriptional level. However, Fe content was significantly increased in the roots and decreased in the shoots of cpl1-2 plants, indicating that the cpl1 mutations do indeed affect Fe homeostasis. Furthermore, root growth of cpl1-2 showed improved tolerance to Fe deficiency and cadmium (Cd) toxicity. cpl1-2 plants accumulated more Cd in the shoots, suggesting that Cd toxicity in the roots of this mutant is averted by the transport of excess Cd to the shoots. Genetic data indicate that cpl1-2 likely activates Fe deficiency responses upstream of both FE-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent and -independent signaling pathways. Interestingly, various osmotic stress/abscisic acid (ABA)-inducible genes were up-regulated in cpl1-2, and the expression of some ABA-inducible genes was controlled by Fe availability. We propose that the cpl1 mutations enhance Fe deficiency signaling and promote cross talk with a branch of the osmotic stress/ABA signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Hierro/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Adaptación Fisiológica , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Cadmio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Activación Enzimática , FMN Reductasa/genética , FMN Reductasa/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Homeostasis , Mutación , Fosfoproteínas Fosfatasas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal , Estrés Fisiológico , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA