Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Control Release ; 369: 251-265, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493950

RESUMEN

Immunotherapy is currently a standard of care in the treatment of many malignancies. However, predictable side effects caused by systemic administration of highly immunostimulatory molecules have been a serious concern within this field. Intratumoural expression or silencing of immunogenic and immunoinhibitory molecules using nucleic acid-based approaches such as plasmid DNA (pDNA) and small interfering RNA (siRNA), respectively, could represent a next generation of cancer immunotherapy. Here, we employed lipid nanoparticles (LNPs) to deliver either non-specific pDNA and siRNA, or constructs targeting two prominent immunotherapeutic targets OX40L and indoleamine 2,3-dioxygenase-1 (IDO), to tumours in vivo. In the B16F10 mouse model, intratumoural delivery of LNP-formulated non-specific pDNA and siRNA led to strong local immune activation and tumour growth inhibition even at low doses due to the pDNA immunogenic nature. Replacement of these non-specific constructs by pOX40L and siIDO resulted in more prominent immune activation as evidenced by increased immune cell infiltration in tumours and tumour-draining lymph nodes. Consistently, pOX40L alone or in combination with siIDO could prolong overall survival, resulting in complete tumour regression and the formation of immunological memory in tumour rechallenge models. Our results suggest that intratumoural administration of LNP-formulated pDNA and siRNA offers a promising approach for cancer immunotherapy.


Asunto(s)
ADN , Inmunoterapia , Ratones Endogámicos C57BL , Nanopartículas , Plásmidos , ARN Interferente Pequeño , Animales , Inmunoterapia/métodos , ARN Interferente Pequeño/administración & dosificación , Nanopartículas/administración & dosificación , Nanopartículas/química , Plásmidos/administración & dosificación , ADN/administración & dosificación , ADN/inmunología , Ratones , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Femenino , Línea Celular Tumoral , Melanoma Experimental/terapia , Melanoma Experimental/inmunología , Lípidos/química , Lípidos/administración & dosificación , Portadores de Fármacos/química
2.
Nat Nanotechnol ; 19(6): 846-855, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38366223

RESUMEN

Extracellular vesicles (EVs) derived from mesenchymal stem cells are promising nanotherapeutics in liver diseases due to their regenerative and immunomodulatory properties. Nevertheless, a concern has been raised regarding the rapid clearance of exogenous EVs by phagocytic cells. Here we explore the impact of protein corona on EVs derived from two culturing conditions in which specific proteins acquired from media were simultaneously adsorbed on the EV surface. Additionally, by incubating EVs with serum, simulating protein corona formation upon systemic delivery, further resolved protein corona-EV complex patterns were investigated. Our findings reveal the potential influences of corona composition on EVs under in vitro conditions and their in vivo kinetics. Our data suggest that bound albumin creates an EV signature that can retarget EVs from hepatic macrophages. This results in markedly improved cellular uptake by hepatocytes, liver sinusoidal endothelial cells and hepatic stellate cells. This phenomenon can be applied as a camouflage strategy by precoating EVs with albumin to fabricate the albumin-enriched protein corona-EV complex, enhancing non-phagocytic uptake in the liver. This work addresses a critical challenge facing intravenously administered EVs for liver therapy by tailoring the protein corona-EV complex for liver cell targeting and immune evasion.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Corona de Proteínas , Vesículas Extracelulares/metabolismo , Corona de Proteínas/metabolismo , Corona de Proteínas/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Humanos , Ratones , Hepatocitos/metabolismo , Hepatocitos/citología , Hígado/metabolismo , Macrófagos/metabolismo , Macrófagos/citología
3.
Front Immunol ; 14: 1204224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441083

RESUMEN

Background: Intracellular communication within the tumour is complex and extracellular vesicles (EVs) have been identified as major contributing factors for the cell-to-cell communication in the local and distant tumour environments. Here, we examine the differential effects of breast cancer (BC) subtype-specific patient serum and cell-line derived EVs in the regulation of T cell mediated immune responses. Methods: Ultracentrifugation was used to isolate EVs from sera of 63 BC patients, 15 healthy volunteers and 4 human breast cancer cell lines. Longitudinal blood draws for EV isolation for patients on neoadjuvant chemotherapy was also performed. Characterization of EVs was performed by Nanoparticle Tracking Analysis (NTA), transmission electron microscopy (TEM) and immunoblotting. CD63 staining was performed on a tissue microarray of 218 BC patients. In-house bioinformatics algorithms were utilized for the computation of EV associated expression scores within The Cancer Genome Atlas (TCGA) and correlated with tumour infiltrating lymphocyte (TIL) scores. In vitro stimulation of PBMCs with EVs from serum and cell-line derived EVs was performed and changes in the immune phenotypes characterized by flow cytometry. Cytokine profiles were assessed using a 105-plex immunoassay or IL10 ELISA. Results: Patients with triple negative breast cancers (TNBCs) exhibited the lowest number of EVs in the sera; whilst the highest was detected in ER+HER2+ cancers; reflected also in the higher level of CD63+ vesicles found within the ER+HER2+ local tumour microenvironment. Transcriptomic analysis of the TCGA data identified that samples assigned with lower EV scores had significantly higher abundance of CD4+ memory activated T cells, T follicular cells and CD8 T cells, plasma, and memory B cells; whilst samples with high EV scores were more enriched for anti-inflammatory M2 macrophages and mast cells. A negative correlation between EV expression scores and stromal TIL counts was also observed. In vitro experiments confirmed that circulating EVs within breast cancer subtypes have functionally differing immunomodulatory capabilities, with EVs from patients with the most aggressive breast cancer subtype (TNBCs) demonstrating the most immune-suppressive phenotype (decreased CD3+HLA-DR+ but increased CD3+PD-L1 T cells, increased CD4+CD127-CD25hi T regulatory cells with associated increase in IL10 cytokine production). In depth assessment of the cytokine modulation triggered by the serum/cell line derived exosomes confirmed differential inflammatory cytokine profiles across differing breast cancer subtypes. Studies using the MDA-231 TNBC breast cancer cell-line derived EVs provided further support that TNBC EVs induced the most immunosuppressive response within PBMCs. Discussion: Our study supports further investigations into how tumour derived EVs are a mechanism that cancers can exploit to promote immune suppression; and breast cancer subtypes produce EVs with differing immunomodulatory capabilities. Understanding the intracellular/extracellular pathways implicated in alteration from active to suppressed immune state may provide a promising way forward for restoring immune competence in specific breast cancer patient populations.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Interleucina-10/metabolismo , Citocinas/metabolismo , Células MCF-7 , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
4.
J Pharm Pharmacol ; 75(7): 921-930, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37279781

RESUMEN

OBJECTIVES: Temozolomide (TMZ), the first line for glioma therapy, suffers from stability at physiological pH. TMZ was selected as a challenging model drug for loading into human serum albumin nanoparticles (HSA NPs). Our aim is to optimise the conditions for TMZ loading into HSA NPs while ensuring TMZ stability. METHODS: Blank and TMZ-HSA NPs were fabricated using the de-solvation technique and the effect of different formulation parameters was evaluated. KEY FINDINGS: For blank NPs, crosslinking time had no significant effect on NPs' size while acetone produced significantly smaller particles than ethanol. Upon drug loading, though TMZ was stable in acetone and ethanol as single agents yet, ethanol-based NPs showed misleadingly high EE% due to drug instability in ethanol formulations as evident by the UV spectrum.The optimum conditions for drug-loaded particles were: 10 mg/ml HSA, 4 mg TMZ using acetone, yielded NPs with 145 nm in diameter, ξ of -16.98 mV and 0.16% DL. The selected formula reduced the cell viabilities of GL261 glioblastoma cells and BL6 glioblastoma stem cells to 61.9% and 38.3%, respectively. CONCLUSIONS: Our results corroborated that careful manipulation of TMZ formulation processing parameters is crucial for encapsulating such chemically unstable dug while simultaneously ensuring its chemical stability.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Solventes , Acetona/uso terapéutico , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Albúmina Sérica Humana , Etanol
5.
Biomaterials ; 299: 122158, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37243988

RESUMEN

Therapeutic nucleic acids (TNAs) comprise an alternative to conventional drugs for cancer therapy. Recently, stable nucleic acid lipid particles (SNALPs) have been explored to deliver TNA efficiently and safely both in vitro and in vivo. Small interfering RNA (siRNA) and messenger RNA (mRNA) based drugs have been suggested for a wide range of pathologies, and their respective lipid nanoparticle (LNP) formulations have been optimised using a Design of Experiments (DoE) approach. However, it is uncertain as to whether data obtained from DoE using simple experimental outputs can be used to generate a general heuristic for delivery of diverse TNA both in vitro and in vivo. Using plasmid DNA (pDNA), for which limited DoE optimisation has been performed, and siRNA to represent the two extremities of the TNA spectrum in terms of size and biological requirements, we performed a comparative DoE for both molecules and assessed the predictive qualities of the model both in vitro and in vivo. By producing a minimum run of 24 SNALP formulations with different lipid compositions incorporating either pDNA or siRNA, DoE models were successfully established for predicting the effect of individual lipid composition on particle size, TNA encapsulation and transfection both in vitro and in vivo. The results showed that the particle size, and in vitro and in vivo transfection efficiency of both pDNA and siRNA SNALP formulations were affected by lipid compositions. The encapsulation efficiency of pDNA SNALPs but not siRNA SNALPs was affected by the lipid composition. Notably, the optimal lipid compositions of SNALPs for pDNA/siRNA delivery were not identical. Furthermore, in vitro transfection efficiency could not be used to predict promising LNP candidates in vivo. The DoE approach described in this study may provide a method for comprehensive optimisation of LNPs for various applications. The model and optimal formulation described in this study can serve as a foundation from which to develop other novel NA containing LNPs for multiple applications such as NA based vaccines, cancer immunotherapies and other TNA therapies.


Asunto(s)
Nanopartículas , Liposomas , ADN , ARN Interferente Pequeño , ARN Mensajero , Lípidos
6.
J Control Release ; 357: 606-619, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37061195

RESUMEN

Intranasal administration is becoming increasingly more attractive as a fast delivery route to the brain for therapeutics circumventing the blood-brain barrier (BBB). Gold nanorods (AuNRs) demonstrate unique optical and biological properties compared to other gold nanostructures due to their high aspect ratio. In this study, we investigated for the first time the brain region-specific distribution of AuNRs and their potential as a drug delivery platform for central nervous system (CNS) therapy following intranasal administration to mice using a battery of analytical and imaging techniques. AuNRs were functionalized with a fluorescent dye (Cyanine5, Cy5) or a metal chelator (diethylenetriaminepentaacetic dianhydride, DTPA anhydride) to complex with Indium-111 via a PEG spacer for optical and nuclear imaging, respectively. Direct quantification of gold was achieved by inductively coupled plasma mass spectrometry. Rapid AuNRs uptake in mice brains was observed within 10 min following intranasal administration which gradually reduced over time. This was confirmed by the 3 imaging/analytical techniques. Autoradiography of sagittal brain sections suggested entry to the brain via the olfactory bulb followed by diffusion to other brain regions within 1 h of administration. The presence of AuNR in glioblastoma (GBM) tumors following intranasal administration was also proven which opens doors for AuNRs applications, as nose-to-brain drug delivery carriers, for treatment of a range of CNS diseases.


Asunto(s)
Glioblastoma , Nanotubos , Ratones , Animales , Administración Intranasal , Oro/química , Encéfalo , Nanotubos/química
7.
Drug Deliv Transl Res ; 13(7): 2032-2040, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36417163

RESUMEN

In situ vaccination with immunostimulatory compounds is a demonstrated means to treat tumors preclinically. While these therapeutic effects have been attributed to the actions of T cells or innate immune activation, characterisation of the humoral immune response is seldom performed. This study aims to identify whether the injection of immunoadjuvants, Addavax (Adda) and cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG), intratumorally can influence the antibody response. Specifically, whether intratumoral injection of immunoadjuvants can alter the tumor-specific antibody target, titre and isotype. Following this, the study aimed to investigate whether serum obtained from in situ vaccinated mice could neutralise circulating tumor cells. Serum was obtained from mice bearing B16F10-OVA-Luc-GFP tumors treated with immunoadjuvants. Antibody targets' titre and isotype were assessed by indirect ELISA. The ability of serum to neutralise circulating cancer cells was evaluated in a B16F10 pseudo-metastatic model. It was observed that tumor-bearing mice mount a specific anti-tumor antibody response. Antibody titre and target were unaffected by in situ vaccination with immunoadjuvants; however, a higher amount of IgG2c was produced in mice receiving Adda plus CpG. Serum from in situ vaccinated mice was unable to neutralise circulating B16F10 cells. Thus, this study has demonstrated that anti-tumor antibody isotype may be modified using in situ vaccination; however, this alone is not sufficient to neutralise circulating cancer cells.


Asunto(s)
Adyuvantes Inmunológicos , Neoplasias , Ratones , Animales , Anticuerpos
8.
Int J Pharm ; 631: 122481, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36513254

RESUMEN

Non-viral vectors are promising nucleic acid carriers which have been utilized in gene-based cancer immunotherapy. The aim of this study is to compare the transfection efficiency and cytotoxicity of three cationic non-viral vectors namely Polyethylenimine (PEI), Lipofectamine 2000 (LPF) and stable nucleic acid lipid particles (SNALPs) of different lipid compositions, for the delivery of plasmid DNA (pDNA) expressing immunostimulatory molecules, OX40L or 4-1BBL, to cancer cells in vitro. The results indicate that PEI and LPF are efficient vectors for pDNA delivery with high transfection efficiency obtained. However, pDNA-PEI and pDNA-LPF complexes up-regulated the expression of programmed death ligand-1 (PD-L1) and induced significant cytotoxicity in both B16F10 and CT26 cell lines. The up-regulation of PD-L1 expression induced by pDNA-PEI and pDNA-LPF complexes was independent of cancer cell line, nor was it linked to the presence of GpC motifs in the pDNA. In contrast, the use of biocompatible SNALPs (MC3 and KC2 types) resulted in lower pDNA transfection efficiency, however no significant up-regulation of PD-L1 or cytotoxicity was observed. A strong correlation was found between up-regulation of PD-L1 expression and cytotoxicity. Up-regulation of PD-L1 expression could be mitigated with RNAi, maintaining expression at basal levels. Due to the improved biocompatibility and the absence of PD-L1 up-regulation, SNALPs represent a viable non-viral nucleic acid vector for delivery of pDNA encoding immunostimulatory molecules. The results of this study suggest that PD-L1 expression should be monitored when selecting commercial transfection reagents as pDNA vectors for cancer immunotherapy in vitro.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/genética , Regulación hacia Arriba , Transfección , Plásmidos/genética , ADN , Polietileneimina
9.
Int J Biol Macromol ; 217: 731-747, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35841964

RESUMEN

Drug covalently bound to polymers had formed, lately, platforms with great promise in drug delivery. These drug polymer conjugates (DPC) boosted drug loading and controlled medicine release with targeting ability. Herein, the ability of entecavir (E) conjugated to hyaluronic acid (HA) forming the core of vitamin E coated lipid nanohybrids (EE-HA LPH), to target Kupffer cells and hepatocyte had been proved. The drug was associated to HA with efficiency of 93.48 ± 3.14 % and nanohybrids loading of 22.02 ± 2.3 %. DiI labelled lipidic nanohybrids improved the macrophage uptake in J774 cells with a 21 day hepatocytes retention post intramuscular injection. Finally, in vivo biocompatibility and safety with respect to body weight, organs indices and histopathological alterations were demonstrated. Coating with vitamin E and conjugation of E to HA (a CD44 ligand), could give grounds for prospective application for vectored nano-platform in hepatitis B.


Asunto(s)
Ácido Hialurónico , Nanopartículas , Guanina/análogos & derivados , Ácido Hialurónico/metabolismo , Lípidos , Macrófagos/metabolismo , Polímeros/metabolismo , Vitamina E/farmacología
10.
Biomater Sci ; 10(13): 3410-3432, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35604372

RESUMEN

Clustered regulatory interspaced short palindromic repeats or CRISPR/Cas9 has emerged as a potent and versatile tool for efficient genome editing. This technology has been exploited for several applications including disease modelling, cell therapy, diagnosis, and treatment of many diseases including cancer. The in vivo application of CRISPR/Cas9 is hindered by poor stability, pharmacokinetic profile, and the limited ability of the CRISPR payloads to cross biological barriers. Although viral vectors have been implemented as delivery tools for efficient in vivo gene editing, their application is associated with high immunogenicity and toxicity, limiting their clinical translation. Hence, there is a need to explore new delivery methods that can guarantee safe and efficient delivery of the CRISPR/Cas9 components to target cells. In this review, we first provide a brief history and principles of nuclease-mediated gene editing, we then focus on the different CRISPR/Cas9 formats outlining their potentials and limitations. Finally, we discuss the alternative non-viral delivery strategies currently adopted for in vivo CRISPR/Cas9 gene editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/genética
11.
Methods Mol Biol ; 2504: 21-30, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35467276

RESUMEN

Exosomes are a type of extracellular vesicles that contain constituents including proteins, DNAs, and RNAs of the cells that secrete them. Cancerous exosomes are potential biomarkers for cancer diagnosis. Biosensors are useful analytical tools for quantification of biomarkers and targeted molecules. An aptasensor uses the aptamer as the biorecognition element to bind to the target and is one main type of biosensors that is promising for exosomes analysis and clinical cancer detection. The assay described in this chapter allows for reliable, sensitive, and specific detection of cancer-derived exosomes using a colorimetric aptasensor that is promising for point-of-care testing.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Exosomas , Neoplasias , Aptámeros de Nucleótidos/metabolismo , Colorimetría , Exosomas/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/metabolismo
12.
Bioconjug Chem ; 33(3): 473-485, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35224973

RESUMEN

Exosomes or small extracellular vesicles (sEVs) are increasingly gaining attention for their potential as drug delivery systems and biomarkers of disease. Therefore, it is important to understand their in vivo biodistribution using imaging techniques that allow tracking over time and at the whole-body level. Positron emission tomography (PET) allows short- and long-term whole-body tracking of radiolabeled compounds in both animals and humans and with excellent quantification properties compared to other nuclear imaging techniques. In this report, we explored the use of [89Zr]Zr(oxinate)4 (a cell and liposome radiotracer) for direct and intraluminal radiolabeling of several types of sEVs, achieving high radiolabeling yields. The radiosynthesis and radiolabeling protocols were optimized for sEV labeling, avoiding sEV damage, as demonstrated using several characterizations (cryoEM, nanoparticle tracking analysis, dot blot, and flow cytometry) and in vitro techniques. Using pancreatic cancer sEVs (PANC1) in a healthy mouse model, we showed that it is possible to track 89Zr-labeled sEVs in vivo using PET imaging for at least up to 24 h. We also report differential biodistribution of intact sEVs compared to intentionally heat-damaged sEVs, with significantly reduced spleen uptake for the latter. Therefore, we conclude that 89Zr-labeled sEVs using this method can reliably be used for in vivo PET tracking and thus allow efficient exploration of their potential as drug delivery systems.


Asunto(s)
Vesículas Extracelulares , Neoplasias Pancreáticas , Animales , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Ratones , Neoplasias Pancreáticas/metabolismo , Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Circonio
13.
Adv Drug Deliv Rev ; 180: 114030, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34736988

RESUMEN

Virus-like particles (VLPs) are known as self-assembled, non-replicative and non-infectious protein particles, which imitate the formation and structure of original wild type viruses, however, lack the viral genome and/or their fragments. The capacity of VLPs to encompass small molecules like nucleic acids and others has made them as novel vessels of nanocarriers for drug delivery applications. In addition, VLPs surface have the capacity to achieve variation of the surface display via several modification strategies including genetic modification, chemical modification, and non-covalent modification. Among the VLPs nanocarriers, Hepatitis B virus core (HBc) particles have been the most encouraging candidate. HBc particles are hollow nanoparticles in the range of 30-34 nm in diameter and 7 nm thick envelopes, consisting of 180 or 240 copies of identical polypeptide monomer. They also employ a distinctive position among the VLPs carriers due to the high-level synthesis, which serves as a strong protective capsid shell and efficient self-assembly properties. This review highlights on the bioengineering of HBc particles as dynamic nanocarriers for in vivo delivery and specific targeting to solid tumours.


Asunto(s)
Partículas Similares a Virus Artificiales , Sistemas de Liberación de Medicamentos , Virus de la Hepatitis B , Nanopartículas , Neoplasias/tratamiento farmacológico , Bioingeniería , Humanos , Virión
14.
J Mater Chem B ; 10(1): 47-56, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34843615

RESUMEN

Functionalized multi-walled carbon nanotubes (MWCNTs) containing radioactive salts are proposed as a potential system for radioactivity delivery. MWCNTs are loaded with isotopically enriched 152-samarium chloride (152SmCl3), the ends of the MWCNTs are sealed by high temperature treatment, and the encapsulated 152Sm is neutron activated to radioactive 153Sm. The external walls of the radioactive nanocapsules are functionalized through arylation reaction, to introduce hydrophilic chains and increase the water dispersibility of CNTs. The organ biodistribution profiles of the nanocapsules up to 24 h are assessed in naïve mice and different tumor models in vivo. By quantitative γ-counting, 153SmCl3@MWCNTs-NH2 exhibite high accumulation in organs without leakage of the internal radioactive material to the bloodstream. In the treated mice, highest uptake is detected in the lung followed by the liver and spleen. Presence of tumors in brain or lung does not increase percentage accumulation of 153SmCl3@MWCNTs-NH2 in the respective organs, suggesting the absence of the enhanced permeation and retention effect. This study presents a chemical functionalization protocol that is rapid (∼one hour) and can be applied to filled radioactive multi-walled carbon nanocapsules to improve their water dispersibility for systemic administration for their use in targeted radiotherapy.


Asunto(s)
Materiales Biocompatibles/farmacocinética , Glioma/radioterapia , Neoplasias Pulmonares/radioterapia , Melanoma/radioterapia , Nanocápsulas/química , Nanotubos de Carbono/química , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Inyecciones Intravenosas , Neoplasias Pulmonares/secundario , Ensayo de Materiales , Ratones , Estructura Molecular , Tamaño de la Partícula , Radioisótopos , Samario , Distribución Tisular
15.
ACS Nano ; 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34677938

RESUMEN

Immune checkpoint blockade involves targeting immune regulatory molecules with antibodies. Preclinically, complex multiantibody regimes of both inhibitory and stimulatory targets are a promising candidate for the next generation of immunotherapy. However, in this setting, the antibody platform may be limited due to excessive toxicity caused by off target effects as a result of systemic administration. RNA can be used as an alternate to antibodies as it can both downregulate immunosuppressive checkpoints (siRNA) or induce expression of immunostimulatory checkpoints (mRNA). In this study, we demonstrate that the combination of both siRNA and mRNA in a single formulation can simultaneously knockdown and induce expression of immune checkpoint targets, thereby reprogramming the tumor microenvironment from immunosuppressive to immunostimulatory phenotype. To achieve this, RNA constructs were synthesized and formulated into stable nucleic acid lipid nanoparticles (SNALPs); the SNALPs produced were 140-150 nm in size with >80% loading efficiency. SNALPs could transfect macrophages and B16F10 cells in vitro resulting in 75% knockdown of inhibitory checkpoint (PDL1) expression and simultaneously express high levels of stimulatory checkpoint (OX40L) with minimal toxicity. Intratumoral treatment with the proposed formulation resulted in statistically reduced tumor growth, a greater density of CD4+ and CD8+ infiltrates in the tumor, and immune activation within tumor-draining lymph nodes. These data suggest that a single RNA-based formulation can successfully reprogram multiple immune checkpoint interactions on a cellular level. Such a candidate may be able to replace future immune checkpoint therapeutic regimes composed of both stimulatory- and inhibitory-receptor-targeting antibodies.

16.
Eur J Pharm Biopharm ; 169: 297-308, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34678408

RESUMEN

Glioblastoma is one of the most difficult to treat cancers with poor prognosis and survival of around one year from diagnosis. Effective treatments are desperately needed. This work aims to prepare temozolomide acid (TMZA) loaded albumin nanoparticles, for the first time, to target glioblastoma (GL261) and brain cancer stem cells (BL6). TMZA was loaded into human serum albumin nanoparticles (HSA NPs) using the desolvation method. A response surface 3-level factorial design was used to study the effect of different formulation parameters on the drug loading and particle size of NPs. The optimum conditions were found to be: 4 mg TMZA with 0.05% sodium cholate. This yielded NPs with particle size and drug loading of 111.7 nm and 5.5% respectively. The selected formula was found to have good shelf life and serum stability but with a relatively fast drug release pattern. The optimized NPs showed excellent cellular uptake with âˆ¼ 50 and 100% of cells were positive for NP uptake after 24 h incubation with both GL261 and BL6 glioblastoma cell lines, respectively. The selected formula showed high cytotoxicity with Ì´ 20% cell viability at 1 mM TMZA after 72 h incubation time. Finally, the fluorescently labelled NPs showed co-localization with the bioluminescent syngeneic BL6 intra-cranial tumour mouse model after intravenous administration.


Asunto(s)
Glioma , Nanopartículas/uso terapéutico , Osteonectina/metabolismo , Albúmina Sérica Humana/farmacología , Temozolomida , Animales , Antineoplásicos Alquilantes/administración & dosificación , Antineoplásicos Alquilantes/farmacocinética , Productos Biológicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Estabilidad de Medicamentos , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Ratones , Tamaño de la Partícula , Temozolomida/administración & dosificación , Temozolomida/farmacocinética , Distribución Tisular
17.
EBioMedicine ; 73: 103624, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34688033

RESUMEN

Immune checkpoints are regulatory molecules responsible for determining the magnitude and nature of the immune response. The aim of immune checkpoint targeting immunotherapy is to manipulate these interactions, engaging the immune system in treatment of cancer. Clinically, the use of monoclonal antibodies to block immunosuppressive interactions has proven itself to be a highly effective immunotherapeutic intervention. Within the literature there are numerous candidates for next generation of immune checkpoint targeting strategies. One such example is the use of nucleic acid to alter expression levels of immune checkpoint molecules, either as antisense oligo nucleotides/siRNA, to downregulate inhibitory molecules, or mRNA/DNA, to express co-stimulatory molecules. A significant component of nucleic acid delivery is its formulation within a nanoparticulate system. In this review we discuss the progress of the preclinical application of nucleic acid-based immunotherapies to target a selection of co-inhibitory/co-stimulatory molecules. Furthermore, we identify the potential and current gaps within the literature which may form the basis of future work.


Asunto(s)
Sistemas de Liberación de Medicamentos , Regulación de la Expresión Génica , Proteínas de Punto de Control Inmunitario/genética , Nanopartículas , Ácidos Nucleicos/administración & dosificación , Nanomedicina Teranóstica , Animales , Estudios Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Proteínas de Punto de Control Inmunitario/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/patología , Ácidos Nucleicos/genética , Plásmidos/administración & dosificación , Plásmidos/química , Interferencia de ARN , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Resultado del Tratamiento
18.
Biomater Sci ; 9(19): 6355-6380, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34582530

RESUMEN

Celastrol (CLT) is an active ingredient that was initially discovered and extracted from the root of Tripterygium wilfordii. The potential pharmacological activities of CLT in cancer, obesity, and inflammatory, auto-immune, and neurodegenerative diseases have been demonstrated in recent years. However, CLT's clinical application is extremely restricted by its low solubility/permeability, poor bioavailability, and potential off-target toxicity. The advent of nanotechnology provides a solution to improve the oral bioavailability, therapeutic effects or tissue-targeting ability of CLT. This review focuses on the most recent advances, improvements, inventions, and updated literature of various nanocarrier systems for CLT.


Asunto(s)
Portadores de Fármacos , Triterpenos , Nanotecnología , Triterpenos Pentacíclicos , Tripterygium
19.
Theranostics ; 11(18): 8738-8754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522209

RESUMEN

Rational: Tumor immunogenic cell death (ICD), induced by certain chemotherapeutic drugs such as doxorubicin (Dox), is a form of apoptosis potentiating a protective immune response. One of the hallmarks of ICD is the translocation of calreticulin to the cell surface acting as an 'eat me' signal. This manuscript describes the development of a stable nucleic acid-lipid particles (SNALPs) formulation for the simultaneous delivery of ICD inducing drug (Dox) with small interfering RNA (siRNA) knocking down CD47 (siCD47), the dominant 'don't eat me' marker, for synergistic enhancement of ICD. Methods: SNALPs loaded with Dox or siCD47 either mono or combinatory platforms were prepared by ethanol injection method. The proposed systems were characterized for particle size, surface charge, entrapment efficiency and in vitro drug release. The ability of the SNALPs to preserve the siRNA integrity in presence of serum and RNAse were assessed over 48 h. The in vitro cellular uptake and gene silencing of the prepared SNALPs was assessed in CT26 cells. The immunological responses of the SNALPs were defined in vitro in terms of surface calreticulin expression and macrophage-mediated phagocytosis induction. In vivo therapeutic studies were performed in CT26 bearing mice where the therapeutic outcomes were expressed as tumor volume, expression of CD4 and CD8 as well as in vivo silencing. Results: The optimized SNALPs had a particle size 122 ±6 nm and an entrapment efficiency > 65% for both siRNA and Dox with improved serum stability. SNALPs were able to improve siRNA and Dox uptake in CT26 cells with enhanced cytotoxicity. siCD47 SNALPs were able to knockdown CD47 by approximately 70% with no interference from the presence of Dox. The siCD47 and Dox combination SNALPs were able to induce surface calreticulin expression leading to a synergistic effect on macrophage-mediated phagocytosis of treated cells. In a tumor challenge model, 50% of mice receiving siCD47 and Dox containing SNALPs were able to clear the tumor, while the remaining animals showed significantly lower tumor burden as compared to either monotreatment. Conclusion: Therefore, the combination of siCD47 and Dox in a particulate system showed potent anti-tumor activity which merits further investigation in future clinical studies.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Muerte Celular Inmunogénica/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Antígeno CD47/antagonistas & inhibidores , Antígeno CD47/metabolismo , Calreticulina/metabolismo , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Liberación de Fármacos , Inmunoterapia , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/farmacología , Fagocitosis/efectos de los fármacos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología
20.
ACS Appl Mater Interfaces ; 13(34): 40392-40400, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405988

RESUMEN

Black porous silicon nanoparticles (BPSi NPs) are known as highly efficient infrared light absorbers that are well-suitable for photothermal therapy (PTT) and photoacoustic imaging (PAI). PTT and PAI require a sufficient number of effectively light-absorbing NPs to be accumulated in tumor after intravenous administration. Herein, biodistribution of PEGylated BPSi NPs with different sizes (i.e., 140, 200, and 300 nm in diameter) is investigated after intravenous administration in mice. BPSi NPs were conjugated with fluorescent dyes Cy5.5 and Cy7.5 to track them in vitro and in vivo, respectively. Optical imaging with an in vivo imaging system (IVIS) was found to be an inadequate technique to assess the biodistribution of the dye-labeled BPSi NPs in vivo because the intrinsic strong absorbance of the BPSi NPs interfered fluorescence detection. This challenge was resolved via the use of inductively coupled plasma optical emission spectrometry to analyze ex vivo the silicon content in different tissues and tumors. The results indicated that most of the polyethylene glycol-coated BPSi NPs were found to accumulate in the liver and spleen after intravenous injection. The smallest 140 nm particles accumulated the most in tumors at an amount of 9.5 ± 3.4% of the injected dose (concentration of 0.18 ± 0.08 mg/mL), the amount known to produce sufficient heat for cancer PTT. Furthermore, the findings from the present study also suggest that techniques other than optical imaging should be considered to study the organ biodistribution of NPs with strong light absorbance properties.


Asunto(s)
Nanopartículas/química , Silicio/farmacocinética , Animales , Carbocianinas/química , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/química , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Neoplasias/metabolismo , Imagen Óptica , Tamaño de la Partícula , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Porosidad , Células RAW 264.7 , Silicio/química , Bazo/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA