Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Inherit Metab Dis ; 47(4): 792-804, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38430011

RESUMEN

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder characterized by arylsulfatase A (ASA) deficiency, leading to sulfatide accumulation and myelin degeneration in the central nervous system. While primarily considered a white matter (WM) disease, gray matter (GM) is also affected in MLD, and hematopoietic stem cell transplantation (HSCT) may have limited effect on GM atrophy. We cross-sectionally and longitudinally studied GM volumes using volumetric MRI in a cohort of 36 (late-infantile, juvenile and adult type) MLD patients containing untreated and HSCT treated subjects. Cerebrum, cortical GM, (total) CSF, cerebellum, deep gray matter (DGM) (excluding thalamus) and thalamus volumes were analyzed. Longitudinal correlations with measures of cognitive and motor functioning were assessed. Cross-sectionally, juvenile and adult type patients (infantiles excluded based on limited numbers) were compared with controls at earliest scan, before possible treatment. Patients had lower cerebrum, cortical GM, DGM and thalamus volumes. Differences were most pronounced for adult type patients. Longitudinal analyses showed substantial and progressive atrophy of all regions and increase of CSF in untreated patients. Similar, albeit less pronounced, effects were seen in treated patients for cerebrum, cortical GM, CSF and thalamus volumes. Deterioration in motor performance (all patients) was related to atrophy, and increase of CSF, in all regions. Cognitive functioning (data available for treated patients) was related to cerebral, cortical GM and thalamus atrophy; and to CSF increase. Our findings illustrate the importance of recognizing GM pathology as a potentially substantial, clinically relevant part of MLD, apparently less amenable to treatment.


Asunto(s)
Atrofia , Sustancia Gris , Leucodistrofia Metacromática , Imagen por Resonancia Magnética , Humanos , Leucodistrofia Metacromática/patología , Leucodistrofia Metacromática/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Atrofia/patología , Masculino , Femenino , Adulto , Estudios Longitudinales , Adolescente , Adulto Joven , Niño , Estudios Transversales , Preescolar , Persona de Mediana Edad , Trasplante de Células Madre Hematopoyéticas , Lactante , Tálamo/patología , Tálamo/diagnóstico por imagen , Cognición
2.
Radiology ; 300(3): 671-680, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34184934

RESUMEN

Background In vanishing white matter (VWM), a form of leukodystrophy, earlier onset is associated with faster clinical progression. MRI typically shows rarefaction and cystic destruction of the cerebral white matter. Information on the evolution of VWM according to age at onset is lacking. Purpose To determine whether nature and progression of cerebral white matter abnormalities in VWM differ according to age at onset. Materials and Methods Patients with genetically confirmed VWM were stratified into six groups according to age at onset: younger than 1 year, 1 year to younger than 2 years, 2 years to younger than 4 years, 4 years to younger than 8 years, 8 years to younger than 18 years, and 18 years or older. With institutional review board approval, all available MRI scans obtained between 1985 and 2019 were retrospectively analyzed with three methods: (a) ratio of the width of the lateral ventricles over the skull (ventricle-to-skull ratio [VSR]) was measured to estimate brain atrophy; (b) cerebral white matter was visually scored as percentage normal, hyperintense, rarefied, or cystic on fluid-attenuated inversion recovery (FLAIR) images and converted into a white matter decay score; and (c) the intracranial volume was segmented into normal-appearing white and gray matter, abnormal but structurally present (FLAIR-hyperintense) and rarefied or cystic (FLAIR-hypointense) white matter, and ventricular and extracerebral cerebrospinal fluid (CSF). Multilevel regression analyses with patient as a clustering variable were performed to account for the nested data structure. Results A total of 461 examinations in 270 patients (median age, 7 years [interquartile range, 3-18 years]; 144 female patients) were evaluated; 112 patients had undergone serial imaging. Patients with later onset had higher VSR [F(5) = 8.42; P < .001] and CSF volume [F(5) = 21.7; P < .001] and lower white matter decay score [F(5) = 4.68; P < .001] and rarefied or cystic white matter volume [F(5) = 13.3; P < .001]. Rate of progression of white matter decay scores [b = -1.6, t(109) = -3.9; P < .001] and VSRs [b = -0.05, t (109) = -3.7; P < .001] were lower with later onset. Conclusion A radiologic spectrum based on age at onset exists in vanishing white matter. The earlier the onset, the faster and more cystic the white matter decay, whereas with later onset, white matter atrophy and gliosis predominate. © RSNA, 2021.


Asunto(s)
Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/fisiopatología , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Progresión de la Enfermedad , Humanos , Lactante , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA