Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Cancer ; 15(14): 4717-4730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006085

RESUMEN

Background: Luteolin (LUT) is a bioactive compound with several pharmacological activities including anticancer effect. Doxorubicin (DOX) is an anthracycline chemotherapeutic drug that have proven to be effective in treating various types of cancers. Polymeric micelles (PMs) containing biologically active materials have emerged as prospective dosage forms with high drug-loading, which can add therapeutic benefit to the poorly water-soluble compounds and novel chemical entities. PMs are effective in delivering several drugs, such as anticancer drugs, antifungal drugs, flavonoids and drugs targeting the brain. The aim of the current study is to develop PMs for LUT and DOX as a combined delivery system for cancer therapy. Methods: PMs were prepared using 2.5% of each of LUT and DOX with varying compositions of Poloxamer 188, Poloxamer 407, Vitamin E (TPGS), Poloxamer 123 and Gellucire 44/14 at room temperature. Particle size, polydispersity index, zeta potential, were achieved using Zetasizer Nano particle size analyzer and the sizes were further confirmed with transmission electron microscopy (TEM). Prepared PMs were further characterized using powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). An MTT assay was performed on breast cancer (MCF-7) cells and liver cancer (HepG2) cells to determine the cytotoxic effect of the different PMs formulations. Results: PMs were successfully developed and optimized using 74.3% Poloxamer 407 with 20.7% Vitamin E (TPGS), and 70% Poloxamer 407 with 25% Gellucire 44/14, respectively. The droplet size and polydispersity index were found to be 62.03 ± 3.99 nm, 91.96 ± 5.80 nm and 0.33 ± 0.05, 0.59± 0.03, respectively for PMs containing TPGS and Gellucire 44/14. Zeta potentials of the PMs containing TPGS and Gellucire 44/14 were recorded as -2.27 ±0.11mV and -7.78 ± 0.10 mV, respectively. The PMs showed a spherical structure with approximately 50-90 nm range evident by TEM analysis. The PXRD spectra of PMs powder presented the amorphization of LUT and DOX. The FTIR spectra of LUT-loaded and DOX-loaded PMs were identical, suggesting consistent PMs composition. The MTT assay showed that the representative combined drug loaded PMs treatment led to a reduction in the viability of MCF-7 and HepG2 cells compared to drug free PMs and pure LUT, DOX alone. Conclusions: PMs with LUT and DOX exhibited significant cytotoxic effects against breast and liver cancer cells and could thus be an important new pharmaceutical formulation to treat cancer.

2.
Oncol Res ; 32(4): 737-752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560573

RESUMEN

Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Sulfitos , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Metaloproteinasa 12 de la Matriz , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 16 de la Matriz , Pronóstico , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/patología , Riñón/metabolismo , Riñón/patología
3.
PLoS One ; 19(4): e0298326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625872

RESUMEN

Epidermal growth factor receptor EGFR inhibitors are widely used as first line therapy for the treatment of non-small-cell lung cancer (NSCLC) in patients harboring EGFR mutation. However, the acquisition of a second-site mutation (T790 M) limited the efficacy and developed resistance. Therefore, discovery and development of specific drug target for this mutation is of urgent needs. In our study we used the ChemDiv diversity database for receptor-based virtual screening to secure EGFR-TK inhibitors chemotherapeutics. We identified four compounds that bind to the ATP-binding region of the EGFR-TK using AutoDock 4.0 and AutoDock Vina1.1.2 and post-docking investigations. The ligand showed hydrophobic interactions to the hydrophobic region of the binding site and engaged in hydrogen bonding with Met793. The ligands also explored π-cation interactions between the π-system of the ligand-phenyl ring and the positive amino group of Lys745. Molecular mechanics Poisson-Boltzmann surface area MM/PBSA per-residue energy decomposition analyses revealed that Val726, Leu792, Met793, Gly796, Cys797, Leu798, and Thr844 contributed the most to the binding energy. Biological evaluation of the retrieved hit compounds showed suppressing activity against EGFR auto phosphorylation and selective apoptosis-induced effects toward lung cancer cells harboring the EGFR L858R/T790M double mutation. Our work anticipated into novel and specific EGFR-TKIs and identified new compounds with therapeutic potential against lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Ligandos , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Biología Computacional , Resistencia a Antineoplásicos/genética
4.
Int J Biol Macromol ; 253(Pt 5): 127055, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37758106

RESUMEN

Gene editing technologies (GETs) could induce gene knockdown or gene knockout for biomedical applications. The clinical success of gene silence by RNAi therapies pays attention to other GETs as therapeutic approaches. This review aims to highlight GETs, categories, mechanisms, challenges, current use, and prospective applications. The different academic search engines, electronic databases, and bibliographies of selected articles were used in the preparation of this review with a focus on the fundamental considerations. The present results revealed that, among GETs, CRISPR/Cas9 has higher editing efficiency and targeting specificity compared to other GETs to insert, delete, modify, or replace the gene at a specific location in the host genome. Therefore, CRISPR/Cas9 is talented in the production of molecular, tissue, cell, and organ therapies. Consequently, GETs could be used in the discovery of innovative therapeutics for genetic diseases, pandemics, cancer, hopeless diseases, and organ failure. Specifically, GETs have been used to produce gene-modified animals to spare human organ failure. Genetically modified pigs are used in clinical trials as a source of heart, liver, kidneys, and lungs for xenotransplantation (XT) in humans. Viral, non-viral, and hybrid vectors have been utilized for the delivery of GETs with some limitations. Therefore, extracellular vesicles (EVs) are proposed as intelligent and future cargoes for GETs delivery in clinical applications. This study concluded that GETs are promising for the production of molecular, cellular, and organ therapies. The use of GETs as XT is still in the early stage as well and they have ethical and biosafety issues.


Asunto(s)
Edición Génica , Trasplante de Órganos , Animales , Humanos , Porcinos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Técnicas de Transferencia de Gen , Terapia Genética
5.
Mol Biotechnol ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578574

RESUMEN

This study aims to highlight the potential use of cTNAs in therapeutic applications. The COVID-19 pandemic has led to significant use of coding therapeutic nucleic acids (cTNAs) in terms of DNA and mRNA in the development of vaccines. The use of cTNAs resulted in a paradigm shift in the therapeutic field. However, the injection of DNA or mRNA into the human body transforms cells into biological factories to produce the necessary proteins. Despite the success of cTNAs in the production of corona vaccines, they have several limitations such as instability, inability to cross biomembranes, immunogenicity, and the possibility of integration into the human genome. The chemical modification and utilization of smart drug delivery cargoes resolve cTNAs therapeutic problems. The success of cTNAs in corona vaccine production provides perspective for the eradication of influenza viruses, Zika virus, HIV, respiratory syncytial virus, Ebola virus, malaria, and future pandemics by quick vaccine design. Moreover, the progress cTNAs technology is promising for the development of therapy for genetic disease, cancer therapy, and currently incurable diseases.

6.
J Membr Biol ; 256(3): 199-222, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36752839

RESUMEN

Lymphatic drug targeting is an effective approach for targeting immunomodulators, and chemotherapeutic drugs at a specific organ or cellular location. The cellular, paracellular, and dendritic cell trafficking machinery are involved in the lymphatic transport of therapeutic agents. The engineering of triggered and hybrid lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and microbial pandemics. Hybrid lymphatic drug delivery systems can be tailored and developed by grafting the conventional LDDS with biological agents. Thus, hybrid LDDS could collect the benefits of conventional and biological delivery systems. Moreover, the fabrication of triggered LDDS increases drug accumulation in the lymphatic system in the response to an internal stimulus such as pH, and redox status or external such as magnetic field, temperature, and light. Stimuli-responsive LDD systems prevent premature release of payload and mediate selective drug biodistribution. This improves therapeutic impact and reduces the systemic side effect of anticancer, immunomodulatory, and antimicrobial therapeutics. This review highlights the challenges and future horizons of nanoscaled-triggered LDDS and their influence on the lymphatic trafficking of therapeutic molecules.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Distribución Tisular , Temperatura , Nanopartículas/química
7.
Colloids Surf B Biointerfaces ; 223: 113148, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706479

RESUMEN

Lymphatic drug delivery (LDD) is an attractive option for the prevention and treatment of cancer metastasis. This study aims to develop TPGS decorated nanostructure lipid carrier gefitinib loaded (TPGS-NLC-GEF). Biocompatibility and cytotoxicity were studied using erythrocytes and A549 cell lines. Furthermore, cellular uptake of the prepared TPGS-NLC was studied using 5-carboxyfluorescein (5-CF). Pharmacokinetic, biodistribution, and chylomicron-block flow studies were performed using male Wister Albino rats to investigate the influence of TPGS-NLC on plasma concentration-time profile, organ deposition, and LDD of GEF. The present results indicated that the prepared TPGS-NLC and TPGS-NLC-GEF formulation had a particle size range of 268 and 288 nm with a negative zeta-potential value of - 29.3 and - 26.5 mV, respectively. The in-vitro release showed burst drug release followed by sustained release. In addition, the biosafety in the term of the hemocompatibility study showed that the prepared formulation was safe at the therapeutic level. Additionally, an in-vitro cytotoxicity study showed that the TPGS-NLC was able to enhance the activity of GEF against the A549 cell line. The cellular uptake study showed the ability of TPGS-NLC to enhance 5-CF internalization by 12.6-fold compared to the 5-CF solution. Furthermore, the in-vivo study showed that TPGS-NLC was able to enhance GEF bioavailability (1.5-fold) through lymphatic system which was confirmed via the indirect chylomicron-block flow method. The tissue distribution study showed the ability of lipid nanoparticles to enhance lung drug deposition by 5.8-fold compared to a GEF suspension. This study concluded that GEF-NLC-GEF is an encouraging approach for the treatment of metastatic lung cancer through lymphatic delivery, enhanced bioavailability, and reduced systemic toxicity.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Masculino , Disponibilidad Biológica , Quilomicrones , Portadores de Fármacos/química , Gefitinib , Nanopartículas/química , Tamaño de la Partícula , Distribución Tisular , Ratas , Animales
8.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615641

RESUMEN

Gefitinib (GEF) is utilized in clinical settings for the treatment of metastatic lung cancer. However, premature drug release from nanoparticles in vivo increases the exposure of systemic organs to GEF. Herein, nanostructured lipid carriers (NLC) were utilized not only to avoid premature drug release but also due to their inherent lymphatic tropism. Therefore, the present study aimed to develop a GEF-NLC as a lymphatic drug delivery system with low drug release. Design of experiments was utilized to develop a stable GEF-NLC as a lymphatic drug delivery system for the treatment of metastatic lung cancer. The in vitro drug release of GEF from the prepared GEF-NLC formulations was studied to select the optimum formulation. MTT assay was utilized to study the cytotoxic activity of GEF-NLC compared to free GEF. The optimized GEF-NLC formulation showed favorable physicochemical properties: <300 nm PS, <0.2 PDI, <−20 ZP values with >90% entrapment efficiency. Interestingly, the prepared formulation was able to retain GEF with only ≈57% drug release within 24 h. Furthermore, GEF-NLC reduced the sudden exposure of cultured cells to GEF and produced the required cytotoxic effect after 48 and 72 h incubation time. Consequently, optimized formulation offers a promising approach to improve GEF's therapeutic outcomes with reduced systemic toxicity in treating metastatic lung cancer.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Nanoestructuras , Humanos , Portadores de Fármacos , Gefitinib , Lípidos , Sistemas de Liberación de Medicamentos , Antineoplásicos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Tamaño de la Partícula
9.
Int J Nanomedicine ; 17: 3287-3311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924261

RESUMEN

Purpose: The present study aimed to develop gefitinib-loaded solid lipid nanoparticles (GEF-SLN), and GEF-loaded PEGylated SLN (GEF-P-SLN) for targeting metastatic lung cancer through the lymphatic system. Methods: The prepared SLNs were characterized in terms of physicochemical properties, entrapment efficiency, and in-vitro release. Furthermore, ex-vivo permeability was investigated using the rabbit intestine. Cytotoxicity and apoptotic effects were studied against A549 cell lines as a model for lung cancer. Results: The present results revealed that the particle size and polydispersity index of the prepared formulations range from 114 to 310 nm and 0.066 to 0.350, respectively, with negative zeta-potential (-14 to -27.6). Additionally, SLN and P-SLN showed remarkable entrapment efficiency above 89% and exhibited sustained-release profiles. The permeability study showed that GEF-SLN and GEF-P-SLN enhanced the permeability of GEF by 1.71 and 2.64-fold, respectively, compared with GEF suspension. Cytotoxicity showed that IC50 of pure GEF was 3.5 µg/mL, which decreased to 1.95 and 1.8 µg/mL for GEF-SLN and GEF-P-SLN, respectively. Finally, the apoptotic study revealed that GEF-P-SLN decreased the number of living cells from 49.47 to 3.43 when compared with pure GEF. Conclusion: These results concluded that GEF-P-SLN is a promising approach to improving the therapeutic outcomes of GEF in the treatment of metastatic lung cancer.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Animales , Portadores de Fármacos/química , Gefitinib/uso terapéutico , Lípidos/química , Liposomas , Neoplasias Pulmonares/tratamiento farmacológico , Sistema Linfático , Nanopartículas/química , Tamaño de la Partícula , Polietilenglicoles/uso terapéutico , Conejos
10.
Saudi Med J ; 43(7): 678-686, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35830983

RESUMEN

OBJECTIVES: To detect the cotinine and nicotine serum concentrations of female and male C57BL/6J mice after a 4-week exposure to electronic (e)-cigarette vapors using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). METHODS: This experimental study was carried out at an animal facility and laboratories, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, between January and August 2020. A 4-week exposure to e-cigarettes was carried out using male and female mice and serum samples were obtained for cotinine and nicotine quantification using UPLC-MS/MS. The chromatographic procedures involved the use of a BEH HSS T3 C18 column (100 mm x 2.1 mm, 1.7 µm) with acetonitrile as a mobile phase and 0.1% formic acid (2:98 v/v). RESULTS: The applied methodology has highly efficient properties of detection, estimation, and extraction, where the limit of quantification (LOQ) for nicotine was 0.57 ng/mL and limit of detection (LOD) for nicotine was 0.19 ng/mL, while the LOQ for cotinine was 1.11 ng/mL and LOD for cotinine was 0.38 ng/mL. The correlation coefficient was r2>0.99 for both compounds. The average recovery rate was 101.6±1.33 for nicotine and 100.4±0.54 for cotinine, while the precision and accuracy for cotinine and nicotine were less than 6.1. The serum cotinine level was higher in males (433.7±19.55) than females (362.3±16.27). CONCLUSION: This study showed that the gender factor might play a crucial role in nicotine metabolism.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Cotinina/química , Cotinina/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotina , Espectrometría de Masas en Tándem/métodos
11.
AAPS PharmSciTech ; 23(6): 183, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35773422

RESUMEN

The present study aimed to engineer a nanoscale lipid-based lymphatic drug delivery system with D-α-Tocopherol polyethylene glycol 1000 succinate to combat the lymphatic metastasis of lung cancer. The nanoscale lipid-based systems including GEF-SLN, GEF-NLC, and GEF-LE were prepared and pharmaceutically characterized. In addition, the most stable formulation (GEF-NLC) was subjected to an in vitro release study. Afterward, the optimized GEF-NLC was engineered with TPGS (GEF-TPGS-NLC) and subjected to in vitro cytotoxicity, and apoptotic studies using the A549 cells line as a surrogate model for lung cancer. The present results revealed that particle size and polydispersity index of freshly prepared formulations were ranging from 198 to 280 nm and 0.106 to 0.240, respectively, with negative zeta potential ranging from - 14 to - 27.6.mV. An in vitro release study showed that sustained drug release was attained from GEF-NLC containing a high concentration of lipid. In addition, GEF-NLC and GEF-TPGS-NLC showed remarkable entrapment efficiency above 89% and exhibited sustained release profiles. Cytotoxicity showed that IC50 of pure GEF was 11.15 µg/ml which decreased to 7.05 µg/ml for GEF-TPGS-NLC. The apoptotic study revealed that GEF-TPGS-NLC significantly decreased the number of living cells from 67 to 58% when compared with pure GEF. The present results revealed that the nanoscale and lipid composition of the fabricated SLN, NLC, and LE could mediate the lymphatic uptake of GEF to combat the lymphatic tumor metastasis. Particularly, GEF-TPGS-NLC is a promising LDDS to increase the therapeutic outcomes of GEF during the treatment of metastatic lung cancer.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Células A549 , Línea Celular Tumoral , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Gefitinib , Humanos , Lípidos , Neoplasias Pulmonares/tratamiento farmacológico , Tamaño de la Partícula , Vitamina E
12.
Pharmaceutics ; 13(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34959266

RESUMEN

Bacterial ghosts (BGs) are empty cell envelopes of nonliving evacuated bacterial cells. They are free from their cytoplasmic contents; however, they sustain their cellular 3D morphology and antigenic structures, counting on bioadhesive properties. Lately, they have been tested as an advanced drug delivery system (DDS) for different materials like DNA, peptides, or drugs, either single components or combinations. Different studies have revealed that, BG DDS were paid the greatest attention in recent years. The current review explores the impact of BGs on the field of drug delivery and drug targeting. BGs have a varied area of applications, including vaccine and tumor therapy. Moreover, the use of BGs, their synthesis, their uniqueness as a delivery system and application principles in cancer are discussed. Furthermore, the safety issues of BGs and stability aspects of using ghost bacteria as delivery systems are discussed. Future perspective efforts that must be followed for this important system to continue to grow are important and promising.

13.
Molecules ; 26(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834144

RESUMEN

Between 293.2 and 313.2 K and at 0.1 MPa, the solubility of the weak base, cinnarizine (CNZ) (3), in various {Transcutol-P (TP) (1) + water (2)} combinations is reported. The Hansen solubility parameters (HSP) of CNZ and various {(TP) (1) + water (2)} mixtures free of CNZ were also predicted using HSPiP software. Five distinct cosolvency-based mathematical models were used to link the experimentally determined solubility data of CNZ. The solubility of CNZ in mole fraction was increased with elevated temperature and TP mass fraction in {(TP) (1) + water (2)} combinations. The maximum solubility of CNZ in mole fraction was achieved in neat TP (5.83 × 10-2 at 313.2 K) followed by the minimum in neat water (3.91 × 10-8 at 293.2 K). The values of mean percent deviation (MPD) were estimated as 2.27%, 5.15%, 27.76%, 1.24% and 1.52% for the "Apelblat, van't Hoff, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models", respectively, indicating good correlations. The HSP value of CNZ was closed with that of neat TP, suggesting the maximum solubilization of CNZ in TP compared with neat water and other aqueous mixtures of TP and water. The outcomes of the apparent thermodynamic analysis revealed that CNZ dissolution was endothermic and entropy-driven in all of the {(TP) (1) + water (2)} systems investigated. For {(TP) (1) + water (2)} mixtures, the enthalpy-driven mechanism was determined to be the driven mechanism for CNZ solvation. TP has great potential for solubilizing the weak base, CNZ, in water, as demonstrated by these results.


Asunto(s)
Cinarizina/química , Glicoles de Etileno/química , Termodinámica , Agua/química , Solubilidad
14.
Molecules ; 26(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800115

RESUMEN

Graphene oxide (GO), due to its 2D planar structure and favorable physical and chemical properties, has been used in different fields including drug delivery. This study aimed to investigate the impact of different process parameters on the average size of drug-loaded PEGylated nano graphene oxide (NGO-PEG) particles using design of experiment (DoE) and the loading of drugs with different molecular structures on an NGO-PEG-based delivery system. GO was prepared from graphite, processed using a sonication method, and functionalized using PEG 6000. Acetaminophen (AMP), diclofenac (DIC), and methotrexate (MTX) were loaded onto NGO-PEG particles. Drug-loaded NGO-PEG was then characterized using dynamic light scattering (DLS), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), XRD. The DLS data showed that the drug-loaded NGO-PEG suspensions were in the size range of 200 nm-1.3 µm. The sonication time and the stirring rate were found to be the major process parameters which affected the average size of the drug-loaded NGO-PEG. FTIR, DSC, XRD, and SEM demonstrated that the functionalization or coating of the NGO occurred through physical interaction using PEG 6000. Methotrexate (MTX), with the highest number of aromatic rings, showed the highest loading efficiency of 95.6% compared to drugs with fewer aromatic rings (diclofenac (DIC) 70.5% and acetaminophen (AMP) 65.5%). This study suggests that GO-based nano delivery systems can be used to deliver drugs with multiple aromatic rings with a low water solubility and targeted delivery (e.g., cancer).


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Grafito/química , Nanopartículas/química , Acetaminofén/administración & dosificación , Acetaminofén/química , Rastreo Diferencial de Calorimetría , Diclofenaco/administración & dosificación , Diclofenaco/química , Portadores de Fármacos/química , Metotrexato/administración & dosificación , Metotrexato/química , Microscopía Electrónica de Rastreo , Estructura Molecular , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Polietilenglicoles/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
15.
Bioengineered ; 12(1): 914-926, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33678142

RESUMEN

This study aimed to utilize cholesterol conjugation of 5-fluorouracil (5-FUC) and liposomal formulas to enhance the partitioning of 5-FU into low density lipoprotein (LDL) to target hepatocellular carcinoma (HCC). Thus, 5-FU and 5-FUCwere loaded into liposomes. Later, the direct loading and transfer of 5-FU, and 5-FUC from liposomes into LDL were attained. The preparations were characterized in terms of particle size, zeta potential, morphology, entrapment efficiency, and cytotoxicity using the HepG2 cell line. Moreover, the drug deposition into the LDL and liver tissues was investigated. The present results revealed that liposomal preparations have a nanosize range (155 - 194 nm), negative zeta potential (- 0.82 to - 16 mV), entrapment efficiency of 69% for 5-FU, and 66% for 5-FUC. Moreover, LDL particles have a nanosize range (28-49 nm), negative zeta potential (- 17 to -27 mV), and the entrapment efficiency is 11% for 5-FU and 85% for 5-FUC. Furthermore, 5-FUC loaded liposomes displayed a sustained release profile (57%) at 24 h compared to fast release (92%) of 5-FU loaded liposomes. 5-FUC and liposomal formulas enhanced the transfer of 5-FUC into LDL compared to 5-FU. 5-FUC loaded liposomes and LDL have greater cytotoxicity against HepG2 cell lines compared to 5-FU and 5-FUC solutions. Moreover, the deposition of 5-FUC in LDL (26.87ng/mg) and liver tissues (534 ng/gm tissue) was significantly increased 5-FUC liposomes compared to 5-FU (11.7 ng/g tissue) liposomal formulation. In conclusion, 5-FUC is a promising strategy for hepatic targeting of 5-FU through LDL-mediated gateway.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Fluorouracilo , Lipoproteínas LDL , Liposomas , Hígado/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Fluorouracilo/química , Fluorouracilo/metabolismo , Fluorouracilo/farmacología , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Liposomas/química , Liposomas/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratas , Ratas Wistar
16.
Colloids Surf B Biointerfaces ; 197: 111380, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33068824

RESUMEN

Nanoerythrocytes membrane (NEs) has recently been used to improve pharmacokinetics and biodistribution for successful drug therapy. NEs intended to enhance the drug targeting due to immune evasion and long circulation. In this work, NEs could serve as efficient 5- fluorouracil (5-FU) carriers to target liver cells. NEs decorated 5-FU-loaded chitosan coated-poly (lactide-co-glycolic acid) nanoparticles (5-FU-C-NPs-NEs), chitosomes (5-FU-C-LPs-NEs) and 5-FU-NEs were prepared by hypotonic lysis and extrusion procedures. Moreover, 5-FU loaded-chitosan coated 5-FU-NPs (5-FU-C-NPs) and chitosomes (5-FU-C-LPs) for the compared issues were prepared. They were characterized in terms of particle size, encapsulation efficiency (EE), membrane protein content, phosphatidylserine exposure, surface morphology, and in vitro release profiles. Also, their cytotoxic efficacy was determined. Furthermore, pharmacokinetics and biodistribution studies were investigated for optimized formulation. The results revealed that 5-FU-C-NPs-NEs have narrow particle size distribution, desirable EE%, and retained the erythrocyte membrane properties as confirmed by polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, it displayed a sustained release profile up to 72 h of 5-FU-C-NPs-NEs compared to other formulations. In comparison to 5-FU solution and 5-FU-C-NPs, 5-FU-C-NPs-NEs extended the drug release time in vivo with highly uptake by the liver. These results suggest that the 5-FU-C-NPs-NEs could be used to deliver 5-FU and enhance its targetability to liver cancer.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Biomimética , Portadores de Fármacos , Fluorouracilo , Humanos , Tamaño de la Partícula , Distribución Tisular
17.
Curr Drug Deliv ; 18(1): 19-30, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32682379

RESUMEN

AIM: This study aimed to explore an affordable technique for the fabrication of Chitosan Nanoshuttles (CSNS) at the ultrafine nanoscale less than 100 nm with improved physicochemical properties, and cytotoxicity on the MCF-7 cell line. BACKGROUND: Despite several studies reported that the antitumor effect of CS and CSNS could achieve intracellular compartment target ability, no enough information is available about this issue and further studies are required to address this assumption. OBJECTIVES: The objective of the current study was to investigate the potential processing variables for the production of ultrafine CSNS (less than; 100 nm) using Box-Behnken Design factorial design (BBD). This was achieved through a study of the effects of processing factors, such as CS concentration, CS/TPP ratio, and pH of the CS solution, on PS, PDI, and ZP. Moreover, the obtained CSNS was evaluated for physicochemical characteristics, morphology. In addition, hemocompatibility and cytotoxicity using Red Blood Cells (RBCs) and MCF-7 cell lines were investigated. METHODS: Box-Behnken Design factorial design (BBD) was used in the analysis of different selected variables. The effects of CS concentration, sodium tripolyphosphate (TPP) ratio, and pH on particle size, Polydispersity Index (PDI), and Zeta Potential (ZP) were measured. Subsequently, the prepared CS nanoshuttles were exposed to stability studies, physicochemical characterization, hemocompatibility, and cytotoxicity using red blood cells and MCF-7 cell lines as surrogate models for in vivo study. RESULT: The present results revealed that the optimized CSNS has ultrafine nanosize, (78.3 ± 0.22 nm), homogenous with PDI (0.131 ± 0.11), and ZP (31.9 ± 0.25 mV). Moreover, CSNS has a spherical shape, amorphous in structure, and physically stable. Moreover, CSNS has biological safety as indicated by a gentle effect on red blood cell hemolysis, besides, the obtained nanoshuttles decrease MCF-7 viability. CONCLUSION: The present findings concluded that the developed ultrafine CSNS has unique properties with enhanced cytotoxicity, thus promising for use in intracellular organelles drug delivery.


Asunto(s)
Neoplasias de la Mama , Quitosano , Nanopartículas , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos , Femenino , Humanos , Células MCF-7 , Tamaño de la Partícula
18.
Colloids Surf B Biointerfaces ; 199: 111543, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33360927

RESUMEN

Phytol, a pharmacologically active compound present in Corchorus olitorius leaf exhibit a range of activity including anti-inflammatory, antioxidant, anticancer, hepatoprotective etc. However, phytol is poorly soluble and absorbed through the intestine wall, therefore the aim of this study is to develop liposomal drug delivery of Corchorus olitorius leaf extract with an average particle size below 150 nm and drug loading efficiency of ≥ 85 %. The impact of different process parameters and material attributes were studied on the average particle size and polydispersity of liposomal batches using design of experiment (DoE). Corchorus olitorius leaf extraction was performed using maceration method and characterised using GC-MS. Liposomal batches of Corchorus olitorius leaf extract were characterized using Malvern zetasizer, transmission electron microscopy (TEM) and UV spectroscopy. The in-vivo anti-inflammatory study of the liposomal preparation of phytol was evaluated using a rat model and in-vitro cancer cell line study was performed on AML and Leukamia cell lines. GC-MS study data showed that phytol is present in C. olitorius leaf extract. Process parameters and material attributes perspective processing temperature, buffer pH and drug: lipid ratio is found as major parameters affecting the average particle size and PDI value of liposomes. Liposomes were prepared in the range of 80-250 nm and optimized batches of liposomes showed drug entrapment efficiency of 60-88 %. In-vivo anti-inflammatory study showed significant activity for C. olitorius leaf extract against carrageenan induced paw edema, which is significantly increased while delivered through liposomes. In-vitro cancer cell line study data suggests that liposomal delivery of phytol was more active at lower concentration compared to pure phytol, for specific cell lines.


Asunto(s)
Corchorus , Animales , Antiinflamatorios/farmacología , Liposomas , Fitol , Extractos Vegetales , Ratas
19.
Saudi Pharm J ; 28(10): 1253-1262, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33132719

RESUMEN

Cell- based targeted delivery is recently gain attention as a promising platform for delivery of anticancer drug in selective and efficient manner. As a new biotechnology platform, bacterial ghosts (BGs) have novel biomedical application as targeted drug delivery system (TDDS). In the current work, Salmonellas' BGs was utilized for the first time as hepatocellular cancer (HCC) in-vitro targeted delivery system. Successful BGs loading and accurate analysis of doxorubicin (DOX) were necessary steps for testing the applicability of DOX loaded BGs in targeting the liver cancer cells. Loading capacity was maximized to reach 27.5 µg/mg (27.5% encapsulation efficiency), by incubation of 10 mg BGs with 1 mg DOX at pH 9 in constant temperature (25 °C) for 10 min. In-vitro release study of DOX loaded BGs showed a sustained release (182 h) obeying Higuchi sustained kinetic release model. The death rate (tested by MTT assay) of HepG2 reached to 64.5% by using of 4 µg/ml, while it was about 51% using the same concentration of the free DOX (P value < 0.0001 One-way ANOVA analysis). The proliferative inhibitory concentration (IC50) of the DOX combined formula was 1.328 µg/ml that was about one third of the IC50 of the free DOX (3.374 µg/ml). Apoptosis analysis (tested by flow-cytometry) showed more accumulation in early apoptosis (8.3%) and late apoptosis/necrosis (91%) by applying 1 µg/ml BGs combined DOX, while 1 µg/ml free DOX showed 33.4% of cells in early apoptosis and 39.3% in late apoptosis/necrosis, (P value˃ 0.05: one-way ANOVA). In conclusion, DOX loaded Salmonellas' BGs are successfully prepared and tested in vivo with promising potential as hepatocellular cancer (HCC) targeted delivery system.

20.
Pharmaceutics ; 12(11)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217989

RESUMEN

Curcumin (CUR) is an attractive polyphenol for its anti-inflammatory, antibacterial, antioxidant, and anticancer properties. Poor solubility in water and sensitivity against sunlight are the most challenging characteristics in the development of CUR for clinical use. The aim is to develop oral lipid-based bioactive self-nanoemulsifying drug delivery systems (Bio-SNEDDSs) for curcumin as a candidate for cancer therapy. Bio-SNEDDSs containing black seed oil, medium-chain mono- and diglycerides, and surfactants were prepared as CUR delivery vehicles. The morphology, droplet size, physical stability, encapsulation efficiency, risk of precipitation, lipid digestion, antioxidant activity, and antimicrobial activity were evaluated for the representative formulations. Finally, an MTT assay was performed on MCF-7 cells to determine the cytotoxic effect of the different formulations. The results showed lower droplet size (28.53 nm) and higher drug-loading (CUR 20 mg, thymoquinone 1.2 mg) for the representative Bio-SNEDDS (black seed oil/Imwitor 988/KolliphorEL (35/15/50) % w/w), along with a transparent appearance upon aqueous dilution. The dynamic dispersion and in-vitro lipolysis data proved that the Bio-SNEDDS was able to keep the CUR in a solubilized form in the gastrointestinal tract. From the antioxidant and antimicrobial studies, it was suggested that the Bio-SNEDDS had the highest activity for disease control. The MTT assay showed that the representative Bio-SNEDDS treatment led to a reduction of cell viability of MCF-7 cells compared to pure CUR and conventional SNEDDSs. A Bio-SNEDDS with elevated entrapment efficiency, antioxidant/antimicrobial activities, and an antiproliferative effect could be the best anticancer drug candidate for potential oral delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA