Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 7(8): e42741, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22880094

RESUMEN

BACKGROUND: Constitutive activation of the alternative NF-κB pathway leads to marginal zone B cell expansion and disorganized spleen microarchitecture. Furthermore, uncontrolled alternative NF-κB signaling may result in the development and progression of cancer. Here, we focused on the question how does the constitutive alternative NF-κB signaling exert its effects in these malignant processes. METHODOLOGY/PRINCIPAL FINDINGS: To explore the consequences of unrestricted alternative NF-κB activation on genome-wide transcription, we compared gene expression profiles of wild-type and NF-κB2/p100-deficient (p100(-/-)) primary mouse embryonic fibroblasts (MEFs) and spleens. Microarray experiments revealed only 73 differentially regulated genes in p100(-/-) vs. wild-type MEFs. Chromatin immunoprecipitation (ChIP) assays showed in p100(-/-) MEFs direct binding of p52 and RelB to the promoter of the Enpp2 gene encoding ENPP2/Autotaxin, a protein with an important role in lymphocyte homing and cell migration. Gene ontology analysis revealed upregulation of genes with anti-apoptotic/proliferative activity (Enpp2/Atx, Serpina3g, Traf1, Rrad), chemotactic/locomotory activity (Enpp2/Atx, Ccl8), and lymphocyte homing activity (Enpp2/Atx, Cd34). Most importantly, biochemical and gene expression analyses of MEFs and spleen, respectively, indicated a marked crosstalk between classical and alternative NF-κB pathways. CONCLUSIONS/SIGNIFICANCE: Our results show that p100 deficiency alone was insufficient for full induction of genes regulated by the alternative NF-κB pathway. Moreover, alternative NF-κB signaling strongly synergized both in vitro and in vivo with classical NF-κB activation, thereby extending the number of genes under the control of the p100 inhibitor of the alternative NF-κB signaling pathway.


Asunto(s)
Subunidad p52 de NF-kappa B/deficiencia , Transducción de Señal , Factor de Transcripción ReIB/metabolismo , Transcripción Genética , Factores de Necrosis Tumoral/metabolismo , Animales , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Subunidad p52 de NF-kappa B/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Bazo/metabolismo
2.
BMC Genomics ; 9: 606, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19087315

RESUMEN

BACKGROUND: Lymphotoxin signaling via the lymphotoxin-beta receptor (LTbetaR) has been implicated in biological processes ranging from development of secondary lymphoid organs, maintenance of spleen architecture, host defense against pathogens, autoimmunity, and lipid homeostasis. The major transcription factor that is activated by LTbetaR crosslinking is NF-kappaB. Two signaling pathways have been described, the classical inhibitor of NF-kappaB alpha (IkappaBalpha)-regulated and the alternative p100-regulated pathway that result in the activation of p50-RelA and p52-RelB NF-kappaB heterodimers, respectively. RESULTS: Using microarray analysis, we investigated the transcriptional response downstream of the LTbetaR in mouse embryonic fibroblasts (MEFs) and its regulation by the RelA and RelB subunits of NF-kappaB. We describe novel LTbetaR-responsive genes that were regulated by RelA and/or RelB. The majority of LTbetaR-regulated genes required the presence of both RelA and RelB, revealing significant crosstalk between the two NF-kappaB activation pathways. Gene Ontology (GO) analysis confirmed that LTbetaR-NF-kappaB target genes are predominantly involved in the regulation of immune responses. However, other biological processes, such as apoptosis/cell death, cell cycle, angiogenesis, and taxis were also regulated by LTbetaR signaling. Moreover, LTbetaR activation inhibited expression of a key adipogenic transcription factor, peroxisome proliferator activated receptor-gamma (pparg), suggesting that LTbetaR signaling may interfere with adipogenic differentiation. CONCLUSION: Microarray analysis of LTbetaR-stimulated fibroblasts provided comprehensive insight into the transcriptional response of LTbetaR signaling and its regulation by the NF-kappaB family members RelA and RelB.


Asunto(s)
Regulación de la Expresión Génica , Receptor beta de Linfotoxina/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIB/genética , Transcripción Genética , Células 3T3 , Animales , Perfilación de la Expresión Génica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA