Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36674998

RESUMEN

Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. In this review, we present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Longevidad , Respuesta de Proteína Desplegada
2.
Cancers (Basel) ; 14(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36077612

RESUMEN

Despite advances in recent years in the study of the molecular profile of sporadic colorectal cancer (sCRC), the specific genetic events that lead to increased aggressiveness or the development of the metastatic process of tumours are not yet clear. In previous studies of the gene expression profile (GEP) using a high-density array (50,000 genes and 6000 miRNAs in a single assay) in sCRC tumours, we identified a 28-gene signature that was found to be associated with an adverse prognostic value for predicting patient survival. Here, we analyse the differential expression of these 28 genes for their possible association with tumour local aggressiveness and metastatic processes in 66 consecutive sCRC patients, followed for >5 years, using the NanoString nCounter platform. The global transcription profile (expression levels of the 28 genes studied simultaneously) allowed us to discriminate between sCRC tumours and nontumoral colonic tissues. Analysis of the biological and functional significance of the dysregulated GEPs observed in our sCRC tumours revealed 31 significantly altered canonical pathways. Among the most commonly altered pathways, we observed the increased expression of genes involved in signalling pathways and cellular processes, such as the PI3K-Akt pathway, the interaction with the extracellular matrix (ECM), and other functions related to cell signalling processes (SRPX2). From a prognostic viewpoint, the altered expression of BST2 and SRPX2 genes were the only independent variables predicting for disease-free survival (DFS). In addition to the pT stage at diagnosis, dysregulated transcripts of ADH1B, BST2, and FER1L4 genes showed a prognostic impact on OS in the multivariate analysis. Based on the altered expression of these three genes, a scoring system was built to stratify patients into low-, intermediate-, and high-risk groups with significantly different 5-year OS rates: 91%, 83%, and 52%, respectively. The prognostic impact was validated in two independent series of sCRC patients from the public GEO database (n = 562 patients). In summary, we show a strong association between the altered expression of three genes and the clinical outcome of sCRC patients, making them potential markers of suitability for adjuvant therapy after complete tumour resection. Additional prospective studies in larger series of patients are required to confirm the clinical utility of the newly identified biomarkers because the number of patients analysed remains small.

3.
Cancers (Basel) ; 13(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202891

RESUMEN

Administering preoperative radiochemotherapy (RCT) in stage II-III tumors to locally advanced rectal carcinoma patients has proved to be effective in a high percentage of cases. Despite this, 20-30% of patients show no response or even disease progression. At present, preoperative response is assessed by a combination of imaging and tumor regression on histopathology, but recent studies suggest that various genetic abnormalities may be associated with the sensitivity or resistance of rectal cancer tumor cells to neoadjuvant therapy. In the present study we investigated the relationship between genetic lesions detected by high-density single-nucleotide polymorphisms (SNP) arrays 6.0 and response to neoadjuvant RCT, evaluated according to Dworak criteria in 39 rectal cancer tumors before treatment. The highest frequency of copy-number (CN) losses detected corresponded to chromosomes 18q (n = 27; 69%), 1p (n = 22; 56%), 15q (n = 19; 49%), 8p (n = 18; 48%), 4q (n = 17; 46%), and 22q (n = 17; 46%); in turn, CN gains more frequently involved chromosomes 20p (n = 22; 56%), 8p (n = 20; 51%), and 15q (n = 16; 41%). There was a significant association between alterations in the 1p, 3q, 7q, 12p, 17q, 20p, and 22q chromosomal regions and the degree of response to therapy prior to surgery. However, 4q, 15q11.1, and 15q14 chromosomal region alterations were identified as important by five prediction algorithms, i.e., those with the greatest influence on predicting the tumor response to treatment with preoperative RCT. Multivariate analysis of prognostic factors showed that gains on 15q11.1 and carcinoembryonic antigen (CEA) levels serum at diagnosis were the only independent variables predicting disease-free survival (DFS). Lymph node involvement also showed a prognostic impact on overall survival (OS) in the multivariate analysis. A deep-learning-based algorithm showed a 100% success rate in predicting both DFS and OS at 60 months after diagnosis of the disease. In summary, our results indicate the existence of an association between tumor genetic abnormalities at diagnosis, response to neoadjuvant therapy, and survival of patients with locally advanced rectal cancer. In addition to the clinical and biological characteristics of locally advanced rectal cancer patients, these could be used in the future as therapeutic and prognostic biomarkers, to identify patients sensitive or resistant to preoperative treatment, helping guide therapeutic decision-making. Additional prospective studies in larger series of patients are required to confirm the clinical utility of the newly identified biomarkers.

4.
Cancers (Basel) ; 13(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072782

RESUMEN

Sporadic Colorectal Cancer (sCRC) is the third leading cause of cancer death in the Western world, and the sCRC patients presenting with synchronic metastasis have the poorest prognosis. Genetic alterations accumulated in sCRC tumor cells translate into mutated proteins and/or abnormal protein expression levels, which contribute to the development of sCRC. Then, the tumor-associated proteins (TAAs) might induce the production of auto-antibodies (aAb) via humoral immune response. Here, Nucleic Acid Programmable Protein Arrays (NAPPArray) are employed to identify aAb in plasma samples from a set of 50 sCRC patients compared to seven healthy donors. Our goal was to establish a systematic workflow based on NAPPArray to define differential aAb profiles between healthy individuals and sCRC patients as well as between non-metastatic (n = 38) and metastatic (n = 12) sCRC, in order to gain insight into the role of the humoral immune system in controlling the development and progression of sCRC. Our results showed aAb profile based on 141 TAA including TAAs associated with biological cellular processes altered in genesis and progress of sCRC (e.g., FSCN1, VTI2 and RPS28) that discriminated healthy donors vs. sCRC patients. In addition, the potential capacity of discrimination (between non-metastatic vs. metastatic sCRC) of 7 TAAs (USP5, ML4, MARCKSL1, CKMT1B, HMOX2, VTI2, TP53) have been analyzed individually in an independent cohort of sCRC patients, where two of them (VTI2 and TP53) were validated (AUC ~75%). In turn, these findings provided novel insights into the immunome of sCRC, in combination with transcriptomics profiles and protein antigenicity characterizations, wich might lead to the identification of novel sCRC biomarkers that might be of clinical utility for early diagnosis of the tumor. These results explore the immunomic analysis as potent source for biomarkers with diagnostic and prognostic value in CRC. Additional prospective studies in larger series of patients are required to confirm the clinical utility of these novel sCRC immunomic biomarkers.

5.
J Gastrointest Oncol ; 12(2): 900-905, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34012678

RESUMEN

Intraluminal shedding of tumor cells is a rare infrequent sporadic colorectal cancer (sCRC) mechanism of spreading. Less than 30 cases of sCRC metastasis into anal fistula have been reported. Here, we study a 72-year-old male with an adenocarcinoma arising in an anal fistula. Subsequent studies revealed another tumor in the rectum without distant metastatic disease; therefore, a curative-intent abdominoperineal resection was performed. The histologic study showed a moderately differentiated adenocarcinoma in both locations. No perineural or lymphovascular invasion was observed, and all the lymphatic nodes resected were negative for malignancy. Both tumors showed positive CK20 and negative CK7 immunostaining, but KRAS G12D mutation was only detected in the rectal tumor. After those conventional studies, a cytogenetic profile of both tumors was performed by interphase fluorescence in situ hybridization (iFISH) techniques. The FISH study displayed an identical genetic profile in both tumors, loss of the chromosomes 8 and 18q, and no alteration in chromosome 7 and 13q. Based on pathological and genetic findings, we established the same clonal origin of both tumors. Currently, the diagnosis of an intraluminal CRC metastasis relies on histologic and immunohistochemistry findings. We suggest that genetic studies at the individual cell level by FISH techniques may be useful in order to differentiate synchronous from intraluminal metastasis.

6.
Open Access Rheumatol ; 12: 175-185, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922097

RESUMEN

BACKGROUND: Fibromyalgia (FM) is a common chronic pain disease, whose pathogenic mechanism still remains elusive. Oxidative stress markers and impaired bioenergetics homeostasis have been proposed as relevant events in the pathogenesis of the disease. Hence, the aim of the study is to analyse the potential biomarkers of mitochondrial imbalance in FM patients along with coenzyme Q10 (CoQ10) as a possible treatment. METHODS: The symptomatology of patients was recorded with an adaption of the Fibromyalgia Impact Questionnaire (FIQ). Mitochondrial imbalance was tested from blood extraction and serum isolation in 33 patients diagnosed with FM and 30 healthy controls. Western blot and HPLC techniques were performed to study the different parameters. Finally, bioinformatic analysis of machine learning was performed to predict possible associations of results. RESULTS: CoQ10 parameter did not show evidence to be a good marker of the disease, as the values are not significantly different between control and patient groups (Student's t-test, CI 95%). For this reason, the focus of the study changed into the ratio between mitochondrial mass and autophagy levels. The bioinformatics analysis showed a possible association between this ratio and patients' symptomatology. Finally, the effects of coenzyme Q10 as a potential treatment for the disease were different within patients, and its efficacy may be related to the initial mitochondrial status. However, there is no statistical significance due to limitations within the sample size. CONCLUSION: Our study supports the hypothesis that an imbalance in mitochondrial homeostasis is involved in the FM pathogenesis. However, whether the increase in oxidative stress is the result of mitochondrial imbalance or the cause of this disease remains an open question. The measurement of this imbalance might be used as a preliminary biomarker for the diagnosis and follow-up of patients with FM, and even for the evaluation of the effects of the different antioxidants therapies.

7.
Sci Rep ; 10(1): 4662, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170146

RESUMEN

Sporadic colorectal cancer (sCRC) is the third most frequent cancer worldwide and the second most common cause of cancer-related deaths (mainly due metastatic dissemination). We investigated the immunohistochemical expression of frequently altered proteins in primary tumors from 51 patients (25 liver metastatic and 26 non-metastatic cases) with a median 103 months follow-up (103 months). We evaluated EGFR copy number (using SNP arrays and FISH) and its expression and regulation (by mRNA and miRNA arrays). We found differences between metastatic and non-metastatic sCRCs for MLH1 (p = 0.05), PMS2 (p = 0.02), CEA (p < 0.001) and EGFR (p < 0.001) expression. EGFR expression was associated with lymph node metastases (p = 0.001), liver metastases at diagnosis (p < 0.001), and advanced stage (p < 0.001). There were associations between EGFR expression-, EGFR gene copy number- and EGFR mRNA levels. We found potential interactions of two miRNAs targeting EGFR expression, (miR-134 and miR-4328, in non-metastatic and metastatic tumors, respectively). EGFR expression was associated with a worse outcome (p = 0.005). Multivariate analysis of prognostic factors for overall survival identified that, the expression of EGFR expression (p = 0.047) and pTNM stage (p < 0.001) predicted an adverse outcome. EGFR expression could be regulated by amplification or polysomies (in metastatic tumors), or miRNAs (miRNA-134, in non-metastatic tumors). EGFR expression in sCRC appears to be related to metastases and poor outcome.


Asunto(s)
Neoplasias Colorrectales/patología , MicroARNs/genética , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Variaciones en el Número de Copia de ADN , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Análisis de Supervivencia
8.
Oncotarget ; 9(76): 34279-34288, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30344942

RESUMEN

It is well known that activating mutations in the KRAS and NRAS genes are associated with poor response to anti-EGFR therapies in patients with metastatic colorectal cancer (mCRC). Approximately half of the patients with wild-type (WT) KRAS colorectal carcinoma do not respond to these therapies. This could be because the treatment decision is determined by the mutational profile of the primary tumor, regardless of the presence of small tumor subclones harboring RAS mutations in lymph nodes or liver metastases. We analyzed the mutational profile of the KRAS, NRAS, BRAF and PI3KCA genes using low-density microarray technology in samples of 26 paired primary tumors, 16 lymph nodes and 34 liver metastases from 26 untreated mCRC patients (n=76 samples). The most frequent mutations found in primary tumors were KRAS (15%) and PI3KCA (15%), followed by NRAS (8%) and BRAF (4%). The distribution of the mutations in the 16 lymph node metastases analyzed was as follows: 4 (25%) in KRAS gene, 3 (19%) in NRAS gene and 1 mutation each in PI3KCA and BRAF genes (6%). As expected, the most prevalent mutation in liver metastasis was in the KRAS gene (35%), followed by PI3KCA (9%) and BRAF (6%). Of the 26 cases studied, 15 (58%) displayed an overall concordance in the mutation status detected in the lymph node metastases and liver metastases compared with primary tumor, suggesting no clonal evolution. In contrast, the mutation profiles differed in the primary tumor and lymph node/metastases samples of the remaining 11 patients (48%), suggesting a spatial and temporal clonal evolution. We confirm the presence of different mutational profiles among primary tumors, lymph node metastases and liver metastases. Our results suggest the need to perform mutational analysis in all available tumor samples of patients before deciding to commence anti-EGFR treatment.

9.
Oncotarget ; 9(35): 24081-24096, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29844874

RESUMEN

The prognostic impact of KRAS mutations and other KRAS-related and non-related genes such as BRAF, NRAS and TP53, on sporadic colorectal cancer (sCRC) remain controversial and/or have not been fully established. Here we investigated the frequency of such mutations in primary sCRC tumors and their impact on patient progression-free survival (PFS) and overall survival (OS). Primary tumor tissues from 87 sCRC patients were analysed using a custom-built next generation sequencing (NGS) panel to assess the hotspot mutated regions of KRAS/NRAS (exons 2, 3 and 4), BRAF (exon 15) and TP53 (all exons). Overall, mutations in these genes were detected in 46/87 sCRC tumors analyzed (53%) with the following frequencies per gene: TP53, 33%; KRAS, 28%; BRAF, 7%; and NRAS, 1%. A significant association was found between KRAS mutations and right side colon tumor location (p=0.05), well-differentiated tumors (p=0.04) and absence of lymphovascular invasion (p=0.05). In turn, BRAF-mutated tumors frequently corresponded to poorly- or moderately-differentiated sCRC (p=0.02) and showed a higher frequency of peritoneal carcinomatosis (p=0.006) and microsatellite instability (p=0.007). From the prognostic point of view, the BRAF mutational status together with the TNM stage were the only variables that showed an independent adverse impact on patient outcome in the multivariate analyses for both PFS and OS. Based on these results a scoring system was built and patients were classified into three prognostic subgroups with different PFS rates at 2 years: 91% vs. 77% vs. 0%, respectively (p<0.0001). Additional prospective studies in larger series of sCRC patients where mutations in genes other than those investigated here are required to validate the utility of the proposed predictive model.

10.
Oncotarget ; 8(64): 107685-107700, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29296198

RESUMEN

Despite significant advances have been achieved in the genetic characterization of sporadic colorectal cancer (sCRC), the precise genetic events leading to the development of distant metastasis remain poorly understood. Thus, accurate prediction of metastatic disease in newly-diagnosed sCRC patients remains a challenge. Here, we evaluated the specific genes and molecular pathways associated with the invasive potential of colorectal tumor cells, through the assessment of the gene expression profile (GEP) of coding and non-coding genes in metastatic (MTX) vs. non-metastatic (non-MTX) primary sCRC tumors followed for >5 years. Overall, MTX tumors showed up-regulation of genes associated with tumor progression and metastatic potential while non-MTX cases displayed GEP associated with higher cell proliferation, activation of DNA repair and anti-tumoral immune/inflammatory responses. Based on only 19 genes a specific GEP that classifies sCRC tumors into two MTX-like and non-MTX-like molecular subgroups was defined which shows an independent prognostic impact on patient overall survival, particularly when it is combined with the lymph node status at diagnosis. In summary, we show an association between the global GEP of primary sCRC cells and their metastatic potential and defined a GEP-based classifier that provides the basis for further prognostic stratification of sCRC patients who are at risk of distant metastases.

11.
Genes Cancer ; 7(7-8): 260-277, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27738496

RESUMEN

Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis. Amitriptyline induced mitochondria dysfunction and oxidative stress in HepG2 cells. Amitriptyline specifically inhibited mitochondrial complex III activity that is associated with decreased mitochondrial membrane potential (∆Ψm) and increased reactive oxygen species (ROS) production. Transmission electron microscopy (TEM) studies revealed structurally abnormal mitochondria that were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitophagy activation, fluorescence microscopy analysis showed mitochondrial Parkin recruitment and colocalization of mitochondria with autophagosome protein markers. Pharmacological or genetic inhibition of autophagy exacerbated the deleterious effects of Amitriptyline on hepatoma cells and led to increased apoptosis. These results suggest that mitophagy acts as an initial adaptive mechanism of cell survival. However persistent mitochondrial damage induced extensive and lethal mitophagy, autophagy stress and autophagolysome permeabilization leading eventually to cell death by apoptosis. Amitriptyline also induced cell death in hepatoma cells lines with mutated p53 and non-sense p53 mutation. Our results support the hypothesis that Amitriptyline-induced mitochondrial dysfunction can be a useful therapeutic strategy for HCC treatment, especially in tumors showing p53 mutations and/or resistant to genotoxic treatments.

12.
Oncotarget ; 7(45): 72908-72922, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27662660

RESUMEN

Metastatic dissemination is the most frequent cause of death of sporadic colorectal cancer (sCRC) patients. Genomic abnormalities which are potentially characteristic of such advanced stages of the disease are complex and so far, they have been poorly described and only partially understood. We evaluated the molecular heterogeneity of sCRC tumors based on simultaneous assessment of the overall GEP of both coding mRNA and non-coding RNA genes in primary sCRC tumor samples from 23 consecutive patients and their paired liver metastases. Liver metastases from the sCRC patients analyzed, systematically showed deregulated transcripts of those genes identified as also deregulated in their paired primary colorectal carcinomas. However, some transcripts were found to be specifically deregulated in liver metastases (vs. non-tumoral colorectal tissues) while expressed at normal levels in their primary tumors, reflecting either an increased genomic instability of metastatic cells or theiradaption to the liver microenvironment. Newly deregulated metastatic transcripts included overexpression of APOA1, HRG, UGT2B4, RBP4 and ADH4 mRNAS and the miR-3180-3p, miR-3197, miR-3178, miR-4793 and miR-4440 miRNAs, together with decreased expression of the IGKV1-39, IGKC, IGKV1-27, FABP4 and MYLK mRNAS and the miR-363, miR-1, miR-143, miR-27b and miR-28-5p miRNAs. Canonical pathways found to be specifically deregulated in liver metastatic samples included multiple genes related with intercellular adhesion and the metastatic processes (e.g., IGF1R, PIK3CA, PTEN and EGFR), endocytosis (e.g., the PDGFRA, SMAD2, ERBB3, PML and FGFR2), and the cell cycle (e.g., SMAD2, CCND2, E2F5 and MYC). Our results also highlighted the activation of genes associated with the TGFß signaling pathway, -e.g. RHOA, SMAD2, SMAD4, SMAD5, SMAD6, BMPR1A, SMAD7 and MYC-, which thereby emerge as candidate genes to play an important role in CRC tumor metastasis.


Asunto(s)
Neoplasias Colorrectales/patología , Genómica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Anciano , Anciano de 80 o más Años , Biomarcadores , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , MicroARNs/genética , Persona de Mediana Edad , Interferencia de ARN , ARN Mensajero/genética , Transducción de Señal , Transcriptoma
13.
J Med Genet ; 53(2): 113-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26566881

RESUMEN

BACKGROUND: Fibromyalgia (FM) is a worldwide diffuse musculoskeletal chronic pain condition that affects up to 5% of the general population. Many symptoms associated with mitochondrial diseases are reported in patients with FM such as exercise intolerance, fatigue, myopathy and mitochondrial dysfunction. In this study, we report a mutation in cytochrome b gene of mitochondrial DNA (mtDNA) in a family with FM with inflammasome complex activation. METHODS: mtDNA from blood cells of five patients with FM were sequenced. We clinically and genetically characterised a patient with FM and family with a new mutation in mtCYB. Mitochondrial mutation phenotypes were determined in skin fibroblasts and transmitochondrial cybrids. RESULTS: After mtDNA sequence in patients with FM, we found a mitochondrial homoplasmic mutation m.15804T>C in the mtCYB gene in a patient and family, which was maternally transmitted. Mutation was observed in several tissues and skin fibroblasts showed a very significant mitochondrial dysfunction and oxidative stress. Increased NLRP3-inflammasome complex activation was observed in blood cells from patient and family. CONCLUSIONS: We propose further studies on mtDNA sequence analysis in patients with FM with evidences for maternal inheritance. The presence of similar symptoms in mitochondrial myopathies could unmask mitochondrial diseases among patients with FM. On the other hand, the inflammasome complex activation by mitochondrial dysfunction could be implicated in the pathophysiology of mitochondrial diseases.


Asunto(s)
Proteínas Portadoras/genética , Citocromos b/genética , Fibromialgia/genética , Inflamasomas/genética , Mutación , Adulto , Proteínas Portadoras/metabolismo , Citocromos b/química , Citocromos b/metabolismo , ADN Mitocondrial/genética , Femenino , Fibromialgia/patología , Humanos , Inflamasomas/metabolismo , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/patología , Proteína con Dominio Pirina 3 de la Familia NLR , Linaje
14.
Antioxid Redox Signal ; 24(3): 157-70, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26132721

RESUMEN

AIMS: Impairment in adenosine monophosphate-activated protein kinase (AMPK) activity and NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation are associated with several metabolic and inflammatory diseases. In this study, we investigated the role of AMPK/NLRP3 inflammasome axis in the molecular mechanism underlying pain perception. RESULTS: Impairment in AMPK activation induced by compound C or sunitinib, two AMPK inhibitors, provoked hyperalgesia in mice (p<0.001) associated with marked NLRP3 inflammasome protein activation and increased serum levels of interleukin-1ß (IL-1ß) (24.56±0.82 pg/ml) and IL-18 (23.83±1.882 pg/ml) compared with vehicle groups (IL-1ß: 8.15±0.44; IL-18: 4.92±0.4). This effect was rescued by increasing AMPK phosphorylation via metformin treatment (p<0.001), caloric restriction diet (p<0.001), or NLRP3 inflammasome genetic inactivation using NLRP3 knockout (nlrp3(-/-)) mice (p<0.001). Deficient AMPK activation and overactivation of NLRP3 inflammasome axis were also observed in blood cells from patients with fibromyalgia (FM), a prevalent human chronic pain disease. In addition, metformin treatment (200 mg/daily), which increased AMPK activation, restored all biochemical alterations examined by us in blood cells and significantly improved clinical symptoms, such as, pain, fatigue, depression, disturbed sleep, and tender points, in patients with FM. INNOVATION AND CONCLUSIONS: These data suggest that AMPK/NLRP3 inflammasome axis participates in chronic pain and that NLRP3 inflammasome inhibition by AMPK modulation may be a novel therapeutic target to fight against chronic pain and inflammatory diseases as FM.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Proteínas Portadoras/genética , Fibromialgia/genética , Inflamasomas/metabolismo , Dolor/genética , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/biosíntesis , Adulto , Animales , Proteínas Portadoras/biosíntesis , Femenino , Fibromialgia/patología , Humanos , Indoles/administración & dosificación , Inflamasomas/genética , Interleucina-18/sangre , Interleucina-1beta/sangre , Masculino , Metformina/administración & dosificación , Ratones , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR , Dolor/patología , Percepción del Dolor/efectos de los fármacos , Fosforilación , Pirroles/administración & dosificación , Sunitinib
15.
Cytoskeleton (Hoboken) ; 72(9): 435-46, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26382917

RESUMEN

Apoptosis is a genetically programmed energy-dependent process of cell demise, characterized by specific morphological and biochemical events in which the activation of caspases has an essential role. During apoptosis the cytoskeleton participates actively in characteristic morphological rearrangements of the dying cell. This reorganisation has been assigned mainly to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent reports have showed that microtubules are reformed during the execution phase of apoptosis organizing an apoptotic microtubule network (AMN). AMN is organized behind plasma membrane, forming a cortical structure. Apoptotic microtubules repolymerization takes place in many cell types and under different apoptotic inducers. It has been hypothesized that AMN is critical for maintaining plasma membrane integrity and cell morphology during the execution phase of apoptosis. AMN disorganization leads apoptotic cells to secondary necrosis and the release of potential toxic molecules which can damage neighbor cells and promotes inflammation. Therefore, AMN formation during physiological apoptosis or in pathological apoptosis induced by anti-cancer treatments is essential for tissue homeostasis and the prevention of additional cell damage and inflammation.


Asunto(s)
Apoptosis , Microtúbulos/fisiología , Actomiosina/química , Adenosina Trifosfato/química , Caspasas/metabolismo , Línea Celular Tumoral , Membrana Celular/fisiología , Permeabilidad de la Membrana Celular , Citoesqueleto/fisiología , Homeostasis , Humanos , Inflamación , Filamentos Intermedios/química , Macrófagos/citología , Polímeros/química
16.
Biochim Biophys Acta ; 1852(7): 1257-67, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25779083

RESUMEN

Impaired AMPK is associated with a wide spectrum of clinical and pathological conditions, ranging from obesity, altered responses to exercise or metabolic syndrome, to inflammation, disturbed mitochondrial biogenesis and defective response to energy stress. Fibromyalgia (FM) is a world-wide diffused musculoskeletal chronic pain condition that affects up to 5% of the general population and comprises all the above mentioned pathophysiological states. Here, we tested the involvement of AMPK activation in fibroblasts derived from FM patients. AMPK was not phosphorylated in fibroblasts from FM patients and was associated with decreased mitochondrial biogenesis, reduced oxygen consumption, decreased antioxidant enzymes expression levels and mitochondrial dysfunction. However, mtDNA sequencing analysis did not show any important alterations which could justify the mitochondrial defects. AMPK activation in FM fibroblast was impaired in response to moderate oxidative stress. In contrast, AMPK activation by metformin or incubation with serum from caloric restricted mice improved the response to moderate oxidative stress and mitochondrial metabolism in FM fibroblasts. These results suggest that AMPK plays an essential role in FM pathophysiology and could represent the basis for a valuable new therapeutic target/strategy. Furthermore, both metformin and caloric restriction could be an interesting therapeutic approach in FM.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Restricción Calórica , Fibroblastos/metabolismo , Fibromialgia/metabolismo , Metformina/farmacología , Mitocondrias/metabolismo , Adulto , Animales , Estudios de Casos y Controles , Células Cultivadas , ADN Mitocondrial/genética , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Estrés Oxidativo
17.
Mitochondrion ; 21: 69-75, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25662535

RESUMEN

Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress, mitochondrial dysfunction and inflammation may have a role in the pathophysiology of fibromyalgia. Despite several skin-related symptoms accompanied by small fiber neuropathy have been studied in FM, these mitochondrial changes have not been yet studied in this tissue. Skin biopsies from patients showed a significant mitochondrial dysfunction with reduced mitochondrial chain activities and bioenergetics levels and increased levels of oxidative stress. These data were related to increased levels of inflammation and correlated with pain, the principal symptom of FM. All these parameters have shown a role in peripheral nerve damage which has been observed in FM as a possible responsible to allodynia. Our findings may support the role of oxidative stress, mitochondrial dysfunction and inflammation as interdependent events in the pathophysiology of FM with a special role in the peripheral alterations.


Asunto(s)
Fibromialgia/patología , Fibromialgia/fisiopatología , Inflamación/patología , Mitocondrias/fisiología , Estrés Oxidativo , Piel/patología , Adulto , Biopsia , Metabolismo Energético , Femenino , Humanos , Persona de Mediana Edad , Dolor/fisiopatología , Nervios Periféricos/patología
20.
Antioxid Redox Signal ; 20(8): 1169-80, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-23886272

RESUMEN

AIMS: Fibromyalgia (FM) is a prevalent chronic pain syndrome characterized by generalized hyperalgesia associated with a wide spectrum of symptoms such as fatigue and joint stiffness. Diagnosis of FM is difficult due to the lack of reliable diagnostic biomarkers, while treatment is largely inadequate. We have investigated the role of coenzyme Q10 (CoQ10) deficiency and mitochondrial dysfunction in inflammasome activation in blood cells from FM patients, and in vitro and in vivo CoQ10 deficiency models. RESULTS: Mitochondrial dysfunction was accompanied by increased protein expression of interleukin (IL)-1ß, NLRP3 (NOD-like receptor family, pyrin domain containing 3) and caspase-1 activation, and an increase of serum levels of proinflammatory cytokines (IL-1ß and IL-18). CoQ10 deficiency induced by p-aminobenzoate treatment in blood mononuclear cells and mice showed NLRP3 inflammasome activation with marked algesia. A placebo-controlled trial of CoQ10 in FM patients has shown a reduced NLRP3 inflammasome activation and IL-1ß and IL-18 serum levels. INNOVATION: These results show an important role for the NLRP3 inflammasome in the pathogenesis of FM, and the capacity of CoQ10 in the control of inflammasome. CONCLUSION: These findings provide new insights into the pathogenesis of FM and suggest that NLRP3 inflammasome inhibition represents a new therapeutic intervention for the disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Fibromialgia/sangre , Inflamasomas/metabolismo , Ubiquinona/análogos & derivados , Vitaminas/administración & dosificación , Adulto , Animales , Proteínas Portadoras/genética , Estudios de Casos y Controles , Caspasa 1/metabolismo , Células Cultivadas , Citocinas/sangre , Suplementos Dietéticos , Método Doble Ciego , Activación Enzimática , Femenino , Fibromialgia/tratamiento farmacológico , Fibromialgia/inmunología , Expresión Génica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Ubiquinona/administración & dosificación , Ubiquinona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA