Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hepatol ; 71(6): 1193-1205, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31433301

RESUMEN

BACKGROUND & AIMS: Hepatic recruitment of monocyte-derived macrophages (MoMFs) contributes to the inflammatory response in non-alcoholic steatohepatitis (NASH). However, how hepatocyte lipotoxicity promotes MoMF inflammation is unclear. Here we demonstrate that lipotoxic hepatocyte-derived extracellular vesicles (LPC-EVs) are enriched with active integrin ß1 (ITGß1), which promotes monocyte adhesion and liver inflammation in murine NASH. METHODS: Hepatocytes were treated with either vehicle or the toxic lipid mediator lysophosphatidylcholine (LPC); EVs were isolated from the conditioned media and subjected to proteomic analysis. C57BL/6J mice were fed a diet rich in fat, fructose, and cholesterol (FFC) to induce NASH. Mice were treated with anti-ITGß1 neutralizing antibody (ITGß1Ab) or control IgG isotype. RESULTS: Ingenuity® Pathway Analysis of the LPC-EV proteome indicated that ITG signaling is an overrepresented canonical pathway. Immunogold electron microscopy and nanoscale flow cytometry confirmed that LPC-EVs were enriched with activated ITGß1. Furthermore, we showed that LPC treatment in hepatocytes activates ITGß1 and mediates its endocytic trafficking and sorting into EVs. LPC-EVs enhanced monocyte adhesion to liver sinusoidal cells, as observed by shear stress adhesion assay. This adhesion was attenuated in the presence of ITGß1Ab. FFC-fed, ITGß1Ab-treated mice displayed reduced inflammation, defined by decreased hepatic infiltration and activation of proinflammatory MoMFs, as assessed by immunohistochemistry, mRNA expression, and flow cytometry. Likewise, mass cytometry by time-of-flight on intrahepatic leukocytes showed that ITGß1Ab reduced levels of infiltrating proinflammatory monocytes. Furthermore, ITGß1Ab treatment significantly ameliorated liver injury and fibrosis. CONCLUSIONS: Lipotoxic EVs mediate monocyte adhesion to LSECs mainly through an ITGß1-dependent mechanism. ITGß1Ab ameliorates diet-induced NASH in mice by reducing MoMF-driven inflammation, suggesting that blocking ITGß1 is a potential anti-inflammatory therapeutic strategy in human NASH. LAY SUMMARY: Herein, we report that a cell adhesion molecule termed integrin ß1 (ITGß1) plays a key role in the progression of non-alcoholic steatohepatitis (NASH). ITGß1 is released from hepatocytes under lipotoxic stress as a cargo of extracellular vesicles, and mediates monocyte adhesion to liver sinusoidal endothelial cells, which is an essential step in hepatic inflammation. In a mouse model of NASH, blocking ITGß1 reduces liver inflammation, injury and fibrosis. Hence, ITGß1 inhibition may serve as a new therapeutic strategy for NASH.


Asunto(s)
Anticuerpos Neutralizantes , Adhesión Celular/inmunología , Hepatocitos/inmunología , Integrina beta1/inmunología , Lisofosfatidilcolinas/farmacología , Macrófagos/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Hepatocitos/metabolismo , Humanos , Cirrosis Hepática/prevención & control , Ratones , Monocitos/inmunología , Enfermedad del Hígado Graso no Alcohólico/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA