Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(3): e2317668121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194455

RESUMEN

Orofacial clefts of the lip and palate are widely recognized to result from complex gene-environment interactions, but inadequate understanding of environmental risk factors has stymied development of prevention strategies. We interrogated the role of DNA methylation, an environmentally malleable epigenetic mechanism, in orofacial development. Expression of the key DNA methyltransferase enzyme DNMT1 was detected throughout palate morphogenesis in the epithelium and underlying cranial neural crest cell (cNCC) mesenchyme, a highly proliferative multipotent stem cell population that forms orofacial connective tissue. Genetic and pharmacologic manipulations of DNMT activity were then applied to define the tissue- and timing-dependent requirement of DNA methylation in orofacial development. cNCC-specific Dnmt1 inactivation targeting initial palate outgrowth resulted in OFCs, while later targeting during palatal shelf elevation and elongation did not. Conditional Dnmt1 deletion reduced cNCC proliferation and subsequent differentiation trajectory, resulting in attenuated outgrowth of the palatal shelves and altered development of cNCC-derived skeletal elements. Finally, we found that the cellular mechanisms of cleft pathogenesis observed in vivo can be recapitulated by pharmacologically reducing DNA methylation in multipotent cNCCs cultured in vitro. These findings demonstrate that DNA methylation is a crucial epigenetic regulator of cNCC biology, define a critical period of development in which its disruption directly causes OFCs, and provide opportunities to identify environmental influences that contribute to OFC risk.


Asunto(s)
Labio Leporino , Fisura del Paladar , Animales , Ratones , Labio Leporino/genética , Metilación de ADN , Fisura del Paladar/genética , Cresta Neural , Metilasas de Modificación del ADN , Proliferación Celular
2.
Cancers (Basel) ; 15(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831683

RESUMEN

Gliomas, the most common type of malignant primary brain tumor, were conventionally classified through WHO Grades I-IV (now 1-4), with low-grade gliomas being entities belonging to Grades 1 or 2. While the focus of the WHO Classification for Central Nervous System (CNS) tumors had historically been on histopathological attributes, the recently released fifth edition of the classification (WHO CNS5) characterizes brain tumors, including gliomas, using an integration of histological and molecular features, including their epigenetic changes such as histone methylation, DNA methylation, and histone acetylation, which are increasingly being used for the classification of low-grade gliomas. This review describes the current understanding of the role of DNA methylation, demethylation, and histone modification in pathogenesis, clinical behavior, and outcomes of brain tumors, in particular of low-grade gliomas. The review also highlights potential diagnostic and/or therapeutic targets in associated cellular biomolecules, structures, and processes. Targeting of MGMT promoter methylation, TET-hTDG-BER pathway, association of G-CIMP with key gene mutations, PARP inhibition, IDH and 2-HG-associated processes, TERT mutation and ARL9-associated pathways, DNA Methyltransferase (DNMT) inhibition, Histone Deacetylase (HDAC) inhibition, BET inhibition, CpG site DNA methylation signatures, along with others, present exciting avenues for translational research. This review also summarizes the current clinical trial landscape associated with the therapeutic utility of epigenetics in low-grade gliomas. Much of the evidence currently remains restricted to preclinical studies, warranting further investigation to demonstrate true clinical utility.

3.
Commun Biol ; 6(1): 120, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717618

RESUMEN

While embryonic mammalian central nervous system (CNS) axons readily grow and differentiate, only a minority of fully differentiated mature CNS neurons are able to regenerate injured axons, leading to stunted functional recovery after injury and disease. To delineate DNA methylation changes specifically associated with axon regeneration, we used a Fluorescent-Activated Cell Sorting (FACS)-based methodology in a rat optic nerve transection model to segregate the injured retinal ganglion cells (RGCs) into regenerating and non-regenerating cell populations. Whole-genome DNA methylation profiling of these purified neurons revealed genes and pathways linked to mammalian RGC regeneration. Moreover, whole-methylome sequencing of purified uninjured adult and embryonic RGCs identified embryonic molecular profiles reactivated after injury in mature neurons, and others that correlate specifically with embryonic or adult axon growth, but not both. The results highlight the contribution to both embryonic growth and adult axon regeneration of subunits encoding the Na+/K+-ATPase. In turn, both biochemical and genetic inhibition of the Na+/K+-ATPase pump significantly reduced RGC axon regeneration. These data provide critical molecular insights into mammalian CNS axon regeneration, pinpoint the Na+/K+-ATPase as a key regulator of regeneration of injured mature CNS axons, and suggest that successful regeneration requires, in part, reactivation of embryonic signals.


Asunto(s)
Axones , Metilación de ADN , Animales , Ratas , Adenosina Trifosfatasas/metabolismo , Axones/metabolismo , Regeneración Nerviosa/genética , Células Ganglionares de la Retina/fisiología
4.
Sci Rep ; 12(1): 17177, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266402

RESUMEN

Adverse childhood experiences (ACEs, i.e., abuse, neglect, household dysfunction) represent a potential risk factor for a wide range of long-lasting diseases and shorter life expectancy. We recently described a 1-week residential group program, based on mindfulness training, artistic expression and EMDR group therapy, that significantly reduced PTSD-related symptoms and increased attention/awareness-related outcomes in adolescent girls with multiple ACEs in a randomized controlled study. Since epigenetic mechanisms (i.e., DNA methylation) have been associated with the long-lasting effects of ACEs, the present report extends these prior findings by exploring genome-wide DNA methylation changes following the program. Saliva samples from all participants (n = 44) were collected and genomic DNA was extracted prior (T1) and following (T2) the intervention. Genome-wide DNA methylation analysis using the MethylationEPIC beadchip array (Illumina) revealed 49 differentially methylated loci (DML; p value < 0.001; methylation change > 10%) that were annotated to genes with roles in biological processes linked to early childhood adversity (i.e., neural, immune, and endocrine pathways, cancer and cardiovascular disease). DNA sequences flanking these DML showed significant enrichment of transcription factor binding sites involved in inflammation, cancer, cardiovascular disease, and brain development. Methylation changes in SIRT5 and TRAPPC2L genes showed associations with changes in trauma-related psychological measures. Results presented here suggest that this multimodal group program for adolescents with multiple victimization modulates the DNA methylome at sites of potential relevance for health and behavioral disorders associated with ACEs.


Asunto(s)
Experiencias Adversas de la Infancia , Epigénesis Genética , Adolescente , Femenino , Humanos , Enfermedades Cardiovasculares/genética , Metilación de ADN , Factores de Transcripción/genética , Inflamación/genética , Neoplasias/genética
5.
Sci Rep ; 10(1): 10781, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612155

RESUMEN

Fragile X mental retardation protein (FMRP) binds to and regulates the translation of amyloid-ß protein precursor (App) mRNA, but the detailed mechanism remains to be determined. Differential methylation of App mRNA could underlie FMRP binding, message localization and translation efficiency. We sought to determine the role of FMRP and N6-methyladeonsine (m6A) on nuclear export of App mRNA. We utilized the m6A dataset by Hsu and colleagues to identify m6A sites in App mRNA and to determine if the abundance of message in the cytoplasm relative to the nucleus is altered in Fmr1 knockout mouse brain cortex. Given that processing of APP to Aß and soluble APP alpha (sAPPα) contributes to disease phenotypes, we also investigated whether Fmr1KO associates with nuclear export of the mRNAs for APP protein processing enzymes, including ß-site amyloid cleaving enzyme (Bace1), A disintegrin and metalloproteinases (Adams), and presenilins (Psen). Fmr1KO did not alter the nuclear/cytoplasmic abundance of App mRNA. Of 36 validated FMRP targets, 35 messages contained m6A peaks but only Agap2 mRNA was selectively enriched in Fmr1KO nucleus. The abundance of the APP processing enzymes Adam9 and Psen1 mRNA, which code for a minor alpha-secretase and gamma-secretase, respectively, were selectively enriched in wild type cytoplasm.


Asunto(s)
Proteínas ADAM/metabolismo , Adenosina/análogos & derivados , Núcleo Celular/metabolismo , Bases de Datos de Ácidos Nucleicos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteínas de la Membrana/metabolismo , Presenilina-1/metabolismo , ARN Mensajero/metabolismo , Proteínas ADAM/genética , Transporte Activo de Núcleo Celular/genética , Adenosina/genética , Adenosina/metabolismo , Animales , Núcleo Celular/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteínas de la Membrana/genética , Ratones , Presenilina-1/genética , ARN Mensajero/genética
6.
BMC Genomics ; 15: 131, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24524199

RESUMEN

BACKGROUND: Methylation on the fifth position of cytosine (5-mC) is an essential epigenetic mark that is linked to both normal neurodevelopment and neurological diseases. The recent identification of another modified form of cytosine, 5-hydroxymethylcytosine (5-hmC), in both stem cells and post-mitotic neurons, raises new questions as to the role of this base in mediating epigenetic effects. Genomic studies of these marks using model systems are limited, particularly with array-based tools, because the standard method of detecting DNA methylation cannot distinguish between 5-mC and 5-hmC and most methods have been developed to only survey the human genome. RESULTS: We show that non-human data generated using the optimization of a widely used human DNA methylation array, designed only to detect 5-mC, reproducibly distinguishes tissue types within and between chimpanzee, rhesus, and mouse, with correlations near the human DNA level (R(2) > 0.99). Genome-wide methylation analysis, using this approach, reveals 6,102 differentially methylated loci between rhesus placental and fetal tissues with pathways analysis significantly overrepresented for developmental processes. Restricting the analysis to oncogenes and tumor suppressor genes finds 76 differentially methylated loci, suggesting that rhesus placental tissue carries a cancer epigenetic signature. Similarly, adapting the assay to detect 5-hmC finds highly reproducible 5-hmC levels within human, rhesus, and mouse brain tissue that is species-specific with a hierarchical abundance among the three species (human > rhesus >> mouse). Annotation of 5-hmC with respect to gene structure reveals a significant prevalence in the 3'UTR and an association with chromatin-related ontological terms, suggesting an epigenetic feedback loop mechanism for 5-hmC. CONCLUSIONS: Together, these data show that this array-based methylation assay is generalizable to all mammals for the detection of both 5-mC and 5-hmC, greatly improving the utility of mammalian model systems to study the role of epigenetics in human health, disease, and evolution.


Asunto(s)
5-Metilcitosina/análisis , Encéfalo/metabolismo , Citosina/análogos & derivados , Genoma , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Islas de CpG , Citosina/análisis , Metilación de ADN , Epigénesis Genética , Sitios Genéticos , Genoma Humano , Humanos , Macaca mulatta , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA