Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
PLoS One ; 15(6): e0234268, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32497150

RESUMEN

Annexin A1 (anxA1) is an immunomodulatory protein that has been proposed as a tumor vascular target for antitumor biologic agents, yet to date the vascular expression of anxA1 in specific tumor indications has not been systematically assessed. Attempts to evaluate vascular anxA1 expression by immunohistochemistry are complicated by a lack of available antibodies that are both specific for anxA1 and bind the N-terminal-truncated form of anxA1 that has previously been identified in tumor vasculature. To study the vascular expression pattern of anxA1 in non-small-cell lung carcinoma (NSCLC), we isolated an antibody capable of binding N-terminal-truncated anxA127-346 and employed it in immunohistochemical studies of human lung specimens. Lung tumor specimens evaluated with this antibody revealed vascular (endothelial) anxA1 expression in five of eight tumor samples studied, but no vascular anxA1 expression was observed in normal lung tissue. Tumor microarray analysis further demonstrated positive vascular staining for anxA1 in 30 of 80 NSCLC samples, and positive staining of neoplastic cells was observed in 54 of 80 samples. No correlation was observed between vascular and parenchymal anxA1 expression. Two rodent tumor models, B16-F10 and Py230, were determined to have upregulated anxA1 expression in the intratumoral vasculature. These data validate anxA1 as a potential vascular anti-tumor target in a subset of human lung tumors and identify rodent models which demonstrate anxA1 expression in tumor vasculature.


Asunto(s)
Anexina A1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Regulación hacia Arriba , Animales , Carcinoma de Pulmón de Células no Pequeñas/irrigación sanguínea , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Ratones
3.
Mol Pharm ; 17(2): 507-516, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31841002

RESUMEN

Targeted strategies to deliver and retain drugs to kidneys are needed to improve drug accumulation and efficacy in a myriad of kidney diseases. These drug delivery systems show potential for improving the therapeutic windows of drugs acting in the kidney. Biodistribution of antibody-based therapeutics in vivo is governed by several factors including binding affinity, size, and valency. Investigations of how the biophysical and biochemical properties of biologics enable them to overcome biological barriers and reach kidneys are therefore of interest. Although renal accumulation of antibody fragments in cancer diagnostics and treatment has been observed, reports on effective delivery of antibody fragments to the kidneys remain scarce. Previously, we demonstrated that targeting plasmalemma vesicle-associated protein (PV1), a caveolae-associated protein, can promote accumulation of antibodies in both the lungs and the kidneys. Here, by fine-tuning the binding affinity of an antibody toward PV1, we observe that the anti-PV1 antibody with reduced binding affinity lost the capability for kidney targeting while retaining the lung targeting activity, suggesting that binding affinity is a critical factor for kidney targeting of the anti-PV1 antibody. We next use the antibody fragment F(ab')2 targeting PV1 to assess the dual effects of rapid kidney filtration and PV1 targeting on kidney-selective targeting. Ex vivo fluorescence imaging results demonstrated that after rapidly accumulating in kidneys at 4 h, PV1-targeted F(ab')2 was continually retained in the kidney at 24 h, whereas the isotype control F(ab')2 underwent urinary elimination with significantly reduced signaling in the kidney. Confocal imaging studies confirmed the localization of PV1-targeted F(ab')2 in the kidney. In addition, the monovalent antibody fragment (Fab-C4) lost the capability for kidney homing, indicating that the binding avidity of anti-PV1 F(ab')2 is important for kidney targeting. Our findings suggest that PV1-targeted F(ab')2 might be useful as a drug carrier for renal targeting and highlight the importance of affinity optimization for tissue targeting antibodies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Caveolas/metabolismo , Portadores de Fármacos/farmacocinética , Fragmentos Fab de Inmunoglobulinas/inmunología , Riñón/efectos de los fármacos , Proteínas de la Membrana/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Afinidad de Anticuerpos , Portadores de Fármacos/administración & dosificación , Femenino , Células HEK293 , Humanos , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Riñón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Distribución Tisular
4.
Bioconjug Chem ; 30(4): 1232-1243, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30912649

RESUMEN

Despite some clinical success with antibody-drug conjugates (ADCs) in patients with solid tumors and hematological malignancies, improvements in ADC design are still desirable due to the narrow therapeutic window of these compounds. Tumor-targeting antibody fragments have distinct advantages over monoclonal antibodies, including more rapid tumor accumulation and enhanced penetration, but are subject to rapid clearance. Half-life extension technologies such as PEGylation and albumin-binding domains (ABDs) have been widely used to improve the pharmacokinetics of many different types of biologics. PEGylation improves pharmacokinetics by increasing hydrodynamic size to reduce renal clearance, whereas ABDs extend half-life via FcRn-mediated recycling. In this study, we used an anti-oncofetal antigen 5T4 diabody conjugated with a highly potent cytotoxic pyrrolobenzodiazepine (PBD) warhead to assess and compare the effects of PEGylation and albumin binding on the in vivo efficacy of antibody fragment drug conjugates. Conjugation of 2× PEG20K to a diabody improved half-life from 40 min to 33 h, and an ABD-diabody fusion protein exhibited a half-life of 45 h in mice. In a xenograft model of breast cancer MDA-MB-436, the ABD-diabody-PBD showed greater tumor growth suppression and better tolerability than either PEG-diabody-PBD or diabody-PBD. These results suggest that the mechanism of half-life extension is an important consideration for designing cytotoxic antitumor agents.


Asunto(s)
Antineoplásicos/uso terapéutico , Inmunoconjugados/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Unión Competitiva , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ensayo de Inmunoadsorción Enzimática , Femenino , Semivida , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Ratones , Ratones Desnudos , Polietilenglicoles/química , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Control Release ; 279: 126-135, 2018 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-29653224

RESUMEN

The accumulation, dissemination and clearance of monoclonal antibody-based therapeutics or imaging reagents targeting tumor associated antigens is governed by several factors including affinity, size, charge, and valency. Tumor targeting antibody fragments have distinct advantages over intact monoclonal antibodies such as enhanced penetration within the tumor and rapid accumulation but are subject to rapid clearance. Polyethylene glycol (PEG)-modified antibody fragments can provide a way to balance tumor penetration and accumulation with improved serum persistence. In this study, we use a diabody, the dimeric antibody fragment, targeting the 5T4 antigen to assess the impact of PEGs of distinct size and shape on tumor accumulation and pharmacokinetics (PK). We show that PEG-modified diabodies improved the PK of the parental diabody from a half-life of 40 min to over 40 h for the higher molecular weight PEG conjugated diabodies. This improvement correlates with the increasing hydrodynamic size of pegylated diabodies, and can serve as a better predictor of the PK behavior of pegylated molecules than molecular weight alone. Tumor uptake profiles determined by quantitative PET imaging differed significantly based on PEG size and shape with diabody-PEG5K showing peak accumulation early on, but with the larger diabody-PEG20K showing better sustained tumor uptake at later time points. In addition, we demonstrate that a diabody-PEG20K-B with a hydrodynamic radius (Rh) of 6 nm had superior tumor uptake than the larger diabody-PEG40K-B with Rh of 12 nm, indicating that beyond 6 nm, larger pegylated diabodies have a slower tumor uptake rate while having comparable clearance kinetics. Our data demonstrate that pegylated diabodies with Rh of ~6 nm have an optimal size and PK profile for tumor uptake. Understanding the impact of pegylation on PK and tumor uptake could facilitate the development of pegylated diabodies as therapeutics.


Asunto(s)
Sistemas de Liberación de Medicamentos , Fragmentos de Inmunoglobulinas/administración & dosificación , Neoplasias/metabolismo , Polietilenglicoles/química , Animales , Transporte Biológico , Línea Celular Tumoral , Femenino , Semivida , Humanos , Hidrodinámica , Fragmentos de Inmunoglobulinas/química , Fragmentos de Inmunoglobulinas/metabolismo , Ratones , Ratones Desnudos , Peso Molecular , Tomografía de Emisión de Positrones , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA