Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 45(11): 3132-9, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11600368

RESUMEN

GW 471552, GW 471558, GW 479821, GW 515716, GW 570009, and GW 587270 are members of a new family of sordarin derivatives called azasordarins. The in vitro activities of these compounds were evaluated against clinical isolates of yeasts, including Candida albicans, Candida non-albicans, and Cryptococcus neoformans strains. Activities against Pneumocystis carinii, Aspergillus spp., less common molds, and dermatophytes were also investigated. Azasordarin derivatives displayed significant activities against the most clinically important Candida species, with the exception of C. krusei. Against C. albicans, including fluconazole-resistant strains, MICs at which 90% of the isolates tested are inhibited (MIC(90)s) were 0.002 microg/ml with GW 479821, 0.015 microg/ml with GW 515716 and GW 587270, and 0.06 microg/ml with GW 471552, GW 471558, and GW 570009. The MIC(90)s of GW 471552, GW 471558, GW 479821, GW 515716, GW 570009, and GW 587270 were 0.12, 0.12, 0.03, 0.06, 0.12, and 0.06 microg/ml, respectively, against C. tropicalis and 4, 0.25, 0.06, 0.25, 0.5, and 0.5 microg/ml, respectively, against C. glabrata. In addition, some azasordarin derivatives (GW 479821, GW 515716, GW 570009, and GW 58720) were active against C. parapsilosis, with MIC(90)s of 2, 4, 4, and 1 microg/ml, respectively. The compounds were extremely potent against P. carinii, showing 50% inhibitory concentrations of 16 microg/ml). These azasordarin derivatives also showed significant activity against emerging fungal pathogens, which affect immunocompromised patients, such as Rhizopus arrhizus, Blastoschizomyces capitatus, and Geotrichum clavatum. Against these organisms, the MICs of GW 587270 ranged from 0.12 to 1 microg/ml, those of GW 479821 and GW 515716 ranged from 0.12 to 2 microg/ml, and those of GW 570009 ranged from 0.12 to 4 microg/ml. Against Fusarium oxysporum, Scedosporium apiospermum, Absidia corymbifera, Cunninghamella bertholletiae, and dermatophytes, GW 587270 was the most active compound, with MICs ranging from 4 to 16 microg/ml. Against Aspergillus spp., the MICs of the compounds tested were higher than 16 microg/ml. The in vitro selectivity of azasordarins was investigated by cytotoxicity studies performed with five cell lines and primary hepatocytes. Concentrations of compound required to achieve 50% inhibition of the parameter considered (Tox(50)s) of GW 570009, GW 587270, GW 479281, and GW 515716 in the cell lines ranged from 60 to 96, 49 to 62, 24 to 36, and 16 to 38 microg/ml, respectively. The cytotoxicity values of GW 471552 and GW 471558 were >100 microg/ml for all cell lines tested. Tox(50)s on hepatocytes were in the following order: GW 471558 > GW 471552 > GW 570009 > GW 587270 > GW 515716 > GW 479821, with values ranging from higher than 100 microg/ml to 23 microg/ml. The cytotoxicity results obtained with fully metabolizing rat hepatocytes were in total agreement with those obtained with cell lines. In summary, the in vitro activities against important pathogenic fungi and the selectivity demonstrated in mammalian cell lines justify additional studies to determine the clinical usefulness of azasordarins.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Antifúngicos/farmacología , Hongos/efectos de los fármacos , Animales , Arthrodermataceae/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo , Humanos , Indenos , Masculino , Pruebas de Sensibilidad Microbiana , Pneumocystis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Células Tumorales Cultivadas , Levaduras/efectos de los fármacos
2.
Antimicrob Agents Chemother ; 42(11): 2863-9, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9797217

RESUMEN

GM 193663, GM 211676, GM 222712, and GM 237354 are new semisynthetic derivatives of the sordarin class. The in vitro antifungal activities of GM 193663, GM 211676, GM 222712, and GM 237354 against 111 clinical yeast isolates of Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei, and Cryptococcus neoformans were compared. The in vitro activities of some of these compounds against Pneumocystis carinii, 20 isolates each of Aspergillus fumigatus and Aspergillus flavus, and 30 isolates of emerging less-common mold pathogens and dermatophytes were also compared. The MICs of GM 193663, GM 211676, GM 222712, and GM 237354 at which 90% of the isolates were inhibited (MIC90s) were 0.03, 0.03, 0.004, and 0.015 microg/ml, respectively, for C. albicans, including strains with decreased susceptibility to fluconazole; 0.5, 0.5, 0.06, and 0.12 microg/ml, respectively, for C. tropicalis; and 0.004, 0.015, 0.008, and 0.03 microg/ml, respectively, for C. kefyr. GM 222712 and GM 237354 were the most active compounds against C. glabrata, C. parapsilosis, and Cryptococcus neoformans. Against C. glabrata and C. parapsilosis, the MIC90s of GM 222712 and GM 237354 were 0.5 and 4 microg/ml and 1 and 16 microg/ml, respectively. The MIC90s of GM 222712 and GM 237354 against Cryptococcus neoformans were 0.5 and 0.25 microg/ml, respectively. GM 193663, GM 211676, GM 222712, and GM 237354 were extremely active against P. carinii. The efficacies of sordarin derivatives against this organism were determined by measuring the inhibition of the uptake and incorporation of radiolabelled methionine into newly synthesized proteins. All compounds tested showed 50% inhibitory concentrations of <0.008 microg/ml. Against A. flavus and A. fumigatus, the MIC90s of GM 222712 and GM 237354 were 1 and 32 microg/ml and 32 and >64 microg/ml, respectively. In addition, GM 237354 was tested against the most important emerging fungal pathogens which affect immunocompromised patients. Cladosporium carrioni, Pseudallescheria boydii, and the yeast-like fungi Blastoschizomyces capitatus and Geotrichum clavatum were the most susceptible of the fungi to GM 237354, with MICs ranging from /=2 microg/ml. In summary, we concluded that some sordarin derivatives, such as GM 222712 and GM 237354, showed excellent in vitro activities against a wide range of pathogenic fungi, including Candida spp., Cryptococcus neoformans, P. carinii, and some filamentous fungi and emerging invasive fungal pathogens.


Asunto(s)
Antifúngicos/farmacología , Hongos/efectos de los fármacos , Pneumocystis/efectos de los fármacos , Adenosina Trifosfato/análisis , Humanos , Indenos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA