Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Biol Rep ; 50(10): 8551-8563, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37644370

RESUMEN

BACKGROUND: Liver cancer is the third leading cause of cancer-related deaths worldwide, and hepatocellular carcinoma (HCC) is the most common type of liver cancer. Transarterial interventions are among the chemotherapeutic approaches used in hardly operable regions prior to transplantation, and in electrochemotherapy, where doxorubicin is used. However, the efficacy of treatment is affected by resistance mechanisms. Previously, we showed that overexpression of the CUE5 gene results in doxorubicin resistance in Saccharomyces cerevisiae (S. cerevisiae). In this study, the effect of Toll-interacting protein (TOLLIP), the human ortholog of CUE5, on doxorubicin resistance was evaluated in HCC cells to identify its possible role in increasing the efficacy of transarterial interventions. METHODS AND RESULTS: The NIH Gene Expression Omnibus (GEO) and Oncomine datasets were analyzed for HCC cell lines with relatively low and high TOLLIP expression, and SNU449 and Hep3B cell lines were chosen, respectively. TOLLIP expression was increased by plasmid transfection and decreased by TOLLIP-siRNA in both cell lines and evaluated by RT-PCR and ELISA. Cell proliferation and viability were examined using xCELLigence and MTT assays after doxorubicin treatment, and growth inhibitory 50 (GI 50) concentrations were evaluated. Doxorubicin GI 50 concentrations decreased approximately 2-folds in both cell lines upon silencing TOLLIP after 48 h of drug treatment. CONCLUSIONS: Our results showed for the first time that silencing TOLLIP in hepatocellular carcinoma cells may help sensitize these cells to doxorubicin and increase the efficacy of chemotherapeutic regimens where doxorubicin is used.


Asunto(s)
Carcinoma Hepatocelular , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Hepáticas , Humanos , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Saccharomyces cerevisiae , Péptidos y Proteínas de Señalización Intracelular/genética
2.
J Gastrointest Cancer ; 54(1): 204-212, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35020133

RESUMEN

Hepatocellular carcinoma is one of the major causes of cancer-related deaths worldwide and is associated with several inflammatory mediators, since 90% of HCCs occur based on chronic hepatitis B or C, alcoholism or increasingly metabolic syndrome-associated inflammation. EMT is a physiological process, with coordinated changes in epithelial gene signatures and is regulated by multiple factors, including cytokines and growth factors such as TGFß, EGF, and FGF. Recent reports propose a strong association between EMT and inflammation, which is also correlated with tumor aggressiveness and poor outcomes. Cellular heterogeneity results collectively as an outcome of EMT, inflammation, and the tumor microenvironment, and it plays a fundamental role in the progression, complexity of cancer, and chemoresistance. In this review, we highlight recent developments concerning the association of EMT and inflammation in the context of HCC progression. Identifying potential EMT-related biomarkers and understanding EMT regulatory molecules will likely contribute to promising developments in clinical practice and will be a valuable tool for predicting metastasis in general and specifically in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Biomarcadores , Inflamación , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral
3.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34948046

RESUMEN

AXL, a member of the TAM family, is a promising therapeutic target due to its elevated expression in advanced hepatocellular carcinoma (HCC), particularly in association with acquired drug resistance. Previously, RNA interference was used to study its role in cancer, and several phenotypic changes, including attenuated cell proliferation and decreased migration and invasion, have been reported. The mechanism of action of AXL in HCC is elusive. We first studied the AXL expression in HCC cell lines by real-time PCR and western blot and showed its stringent association with a mesenchymal phenotype. We then explored the role of AXL in mesenchymal SNU475 cells by CRISPR-Cas9 mediated gene knock-out. AXL-depleted HCC cells displayed drastic phenotypic changes, including increased DNA damage response, prolongation of doubling time, G2 arrest, and polyploidization in vitro and loss of tumorigenicity in vivo. Pharmacological inhibition of AXL by R428 recapitulated G2 arrest and polyploidy phenotype. These observations strongly suggest that acute loss of AXL in some mesenchymal HCC cells is lethal and points out that its inhibition may represent a druggable vulnerability in AXL-high HCC patients.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Regulación hacia Arriba , Animales , Benzocicloheptenos , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Trasplante de Neoplasias , Fenotipo , Triazoles , Tirosina Quinasa del Receptor Axl
4.
J Gastrointest Cancer ; 52(4): 1356-1369, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34738187

RESUMEN

PURPOSE: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide with lack of effective systemic chemotherapy. In this study, we aimed to evaluate the value of ATPase family AAA domain-containing protein 2 (ATAD2) as a biomarker and potential therapeutic target for HCC. METHODS: The expression of ATAD2 was tested in different HCC patient cohorts by immunohistochemistry and comparative transcriptional analysis. The co-expression of ATAD2 and proliferation markers was compared during liver regeneration and malignancy with different bioinformatics tools. The cellular effects of ATAD2 inactivation in liver malignancy was tested on cell cycle, apoptosis, and colony formation ability as well as tumor formation using RNA interference. The genes affected by ATAD2 inactivation in three different HCC cell lines were identified by global gene expression profiling and bioinformatics tools. RESULTS: ATAD2 overexpression is closely correlated with HCC tumor stage. There was gradual increase from dysplasia, well-differentiated and poorly-differentiated HCC, respectively. We also observed transient upregulation of ATAD2 expression during rat liver regeneration in parallel to changes in Ki-67 expression. ATAD2 knockdown resulted in apoptosis and decreased cell survival in vitro and decreased tumor formation in some HCC cell lines. However, three other HCC cell lines tested were not affected. Similarly, gene expression response to ATAD2 inactivation in different HCC cell lines was highly heterogeneous. CONCLUSIONS: ATAD2 is a potential proliferation marker for liver regeneration and HCC. It may also serve as a therapeutic target despite heterogeneous response of malignant cells.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Antígeno Ki-67/metabolismo , Neoplasias Hepáticas/patología , Ratas
5.
Front Cell Dev Biol ; 9: 620248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898418

RESUMEN

Eradication of cancer cells through exposure to high doses of ionizing radiation (IR) is a widely used therapeutic strategy in the clinical setting. However, in many cases, cancer cells can develop remarkable resistance to radiation. Radioresistance represents a prominent obstacle in the effective treatment of cancer. Therefore, elucidation of the molecular mechanisms and pathways related to radioresistance in cancer cells is of paramount importance. In the present study, an integrative bioinformatics approach was applied to three publicly available RNA sequencing and microarray transcriptome datasets of human cancer cells of different tissue origins treated with ionizing radiation. These data were investigated in order to identify genes with a significantly altered expression between radioresistant and corresponding radiosensitive cancer cells. Through rigorous statistical and biological analyses, 36 genes were identified as potential biomarkers of radioresistance. These genes, which are primarily implicated in DNA damage repair, oxidative stress, cell pro-survival, and apoptotic pathways, could serve as potential diagnostic/prognostic markers cancer cell resistance to radiation treatment, as well as for therapy outcome and cancer patient survival. In addition, our findings could be potentially utilized in the laboratory and clinical setting for enhancing cancer cell susceptibility to radiation therapy protocols.

6.
Cancers (Basel) ; 13(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668566

RESUMEN

Hepatocyte dedifferentiation is a major source of hepatocellular carcinoma (HCC), but its mechanisms are unknown. We explored the p73 expression in HCC tumors and studied the effects of transcriptionally active p73ß (TAp73ß) in HCC cells. Expression profiles of p73 and patient clinical data were collected from the Genomic Data Commons (GDC) data portal and the TSVdb database, respectively. Global gene expression profiles were determined by pan-genomic 54K microarrays. The Gene Set Enrichment Analysis method was used to identify TAp73ß-regulated gene sets. The effects of TAp73 isoforms were analyzed in monolayer cell culture, 3D-cell culture and xenograft models in zebrafish using western blot, flow cytometry, fluorescence imaging, real-time polymerase chain reaction (RT-PCR), immunohistochemistry and morphological examination. TAp73 isoforms were significantly upregulated in HCC, and high p73 expression correlated with poor patient survival. The induced expression of TAp73ß caused landscape expression changes in genes involved in growth signaling, cell cycle, stress response, immunity, metabolism and development. Hep3B cells overexpressing TAp73ß had lost hepatocyte lineage biomarkers including ALB, CYP3A4, AFP, HNF4α. In contrast, TAp73ß upregulated genes promoting cholangiocyte lineage such as YAP, JAG1 and ZO-1, accompanied with an increase in metastatic ability. Our findings suggest that TAp73ß may promote malignant dedifferentiation of HCC cells.

7.
Cells ; 9(11)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213091

RESUMEN

The epithelial-to-mesenchymal transition (EMT) is a physiological process activated during early embryogenesis, which continues to shape tissues and organs later on. It is also hijacked by tumor cells during metastasis. The regulation of EMT has been the focus of many research groups culminating in the last few years and resulting in an elaborate transcriptional network buildup. However, the implication of epigenetic factors in the control of EMT is still in its infancy. Recent discoveries pointed out that histone variants, which are key epigenetic players, appear to be involved in EMT control. This review summarizes the available data on histone variants' function in EMT that would contribute to a better understanding of EMT itself and EMT-related diseases.


Asunto(s)
Epigénesis Genética/genética , Transición Epitelial-Mesenquimal/genética , Variación Genética/genética , Histonas/metabolismo , Humanos
8.
Cells ; 8(8)2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31404945

RESUMEN

The epithelial to mesenchymal transition (EMT) and the mesenchymal to epithelial transition (MET) are two critical biological processes that are involved in both physiological events such as embryogenesis and development and also pathological events such as tumorigenesis. They present with dramatic changes in cellular morphology and gene expression exhibiting acute changes in E-cadherin expression. Despite the comprehensive understanding of EMT, the regulation of MET is far from being understood. To find novel regulators of MET, we hypothesized that such factors would correlate with Cdh1 expression. Bioinformatics examination of several expression profiles suggested Elf3 as a strong candidate. Depletion of Elf3 at the onset of MET severely impaired the progression to the epithelial state. This MET defect was explained, in part, by the absence of E-cadherin at the plasma membrane. Moreover, during MET, ELF3 interacts with the Grhl3 promoter and activates its expression. Our findings present novel insights into the regulation of MET and reveal ELF3 as an indispensable guardian of the epithelial state. A better understanding of MET will, eventually, lead to better management of metastatic cancers.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Transición Epitelial-Mesenquimal/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/metabolismo , Células Cultivadas , Humanos
9.
Mol Imaging Radionucl Ther ; 26(Suppl 1): 92-101, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28117294

RESUMEN

Iodide (I-) is an essential constituent of the thyroid hormones triiodothyronine (T3) and thyroxine (T4), and the iodide concentrating mechanism of the thyroid gland is essential for the synthesis of these hormones. In addition, differential uptake of iodine isotopes (radioiodine) is a key modality for the diagnosis and therapy of thyroid cancer. The sodium dependent iodide transport activity of the thyroid gland is mainly attributed to the functional expression of the Na+/I- Symporter (NIS) localized at the basolateral membrane of thyrocytes. In this paper, we review and summarize current data on molecular characterization, on structure and function of NIS protein, as well as on the transcriptional regulation of NIS encoding gene in the thyroid gland. We also propose that a better and more precise understanding of NIS gene regulation at the molecular level in both healthy and malignant thyroid cells may lead to the identification of small molecule candidates. These could then be translated into clinical practice for better induction and more effective modulation of radioiodine uptake in dedifferentiated thyroid cancer cells and in their distant metastatic lesions.

10.
Biochim Biophys Acta ; 1849(6): 731-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25652130

RESUMEN

Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) highlight crucial steps during embryogenesis and tumorigenesis. Induction of dramatic changes in gene expression and cell features is reflected by modulation of Cdh1 (E-cadherin) expression. We show that Cdh1 activity during MET is governed by two enhancers at +7.8 kb and at +11.5 kb within intron 2 that are activated by binding of Grhl3 and Hnf4α, respectively. Recruitment of Grhl3 and Hnf4α to the enhancers is crucial for activating Cdh1 and accomplishing MET in non-tumorigenic mouse mammary gland cells (NMuMG). Moreover, the two enhancers cooperate via Grhl3 and Hnf4α binding, induction of DNA-looping and clustering at the promoter to orchestrate E-cadherin re-expression. Our results provide novel insights into the cellular mechanisms whereby cells respond to MET signals and re-establish an epithelial phenotype by enhancer cooperativity. A general importance of our findings including MET-mediated colonization of metastasizing tumor cells is suggested.


Asunto(s)
Cadherinas/biosíntesis , Transformación Celular Neoplásica/genética , Elementos de Facilitación Genéticos , Transición Epitelial-Mesenquimal/genética , Transcripción Genética , Animales , Cadherinas/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 4 del Hepatocito/genética , Humanos , Ratones , Regiones Promotoras Genéticas , Factores de Transcripción/genética
11.
PLoS One ; 5(6): e11288, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20585577

RESUMEN

BACKGROUND: Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, "normal-like", and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity. METHODOLOGY/PRINCIPAL FINDINGS: A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP) and immortal cell progenitor (ICP) subtypes. All SCP cell lines expressed estrogen receptor (ER). Loss of ER expression combined with the accumulation of p21(Cip1) correlated with senescence in these cell lines. p21(Cip1) knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and "normal-like" tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice. CONCLUSIONS/SIGNIFICANCE: Luminal A and "normal-like" breast cancer cell lines were able to generate luminal-like and myoepithelial-like progeny undergoing senescence arrest. In contrast, luminal B/basal-like cell lines acted as stem/progenitor cells with defective differentiation capacities. Our findings suggest that the malignancy of breast tumors is directly correlated with stem/progenitor phenotypes and poor differentiation potential.


Asunto(s)
Neoplasias de la Mama/patología , Western Blotting , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Análisis por Conglomerados , Femenino , Humanos , Inmunohistoquímica , Receptores de Estrógenos/metabolismo
12.
Nucleic Acids Res ; 38(10): 3172-85, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20123735

RESUMEN

Activity of the sodium/iodide symporter (NIS) in lactating breast is essential for iodide (I(-)) accumulation in milk. Significant NIS upregulation was also reported in breast cancer, indicating a potential use of radioiodide treatment. All-trans-retinoic acid (tRA) is a potent ligand that enhances NIS expression in a subset of breast cancer cell lines and in experimental breast cancer models. Indirect tRA stimulation of NIS in breast cancer cells is very well documented; however, direct upregulation by tRA-activated nuclear receptors has not been identified yet. Aiming to uncover cis-acting elements directly regulating NIS expression, we screened evolutionary-conserved non-coding genomic sequences for responsiveness to tRA in MCF-7. Here, we report that a potent enhancer in the first intron of NIS mediates direct regulation by tRA-stimulated nuclear receptors. In vitro as well as in vivo DNA-protein interaction assays revealed direct association between retinoic acid receptor-alpha (RARalpha) and retinoid-X-receptor (RXR) with this enhancer. Moreover, using chromatin immunoprecipitation (ChIP) we uncovered early events of NIS transcription in response to tRA, which require the interaction of several novel intronic tRA responsive elements. These findings indicate a complex interplay between nuclear receptors, RNA Pol-II and multiple intronic RAREs in NIS gene, and they establish a novel mechanistic model for tRA-induced gene transcription.


Asunto(s)
Neoplasias de la Mama/genética , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Intrones , Receptores de Ácido Retinoico/metabolismo , Simportadores/genética , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Secuencia Conservada , Femenino , Genómica , Humanos , ARN Polimerasa II/metabolismo , Elementos de Respuesta , Receptor alfa de Ácido Retinoico , Receptores X Retinoide/metabolismo , Transcripción Genética , Tretinoina/farmacología
13.
Mutat Res ; 637(1-2): 209-14, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17889038

RESUMEN

Heterozygous germ-line variants of DNA mismatch repair (MMR) genes predispose individuals to hereditary non-polyposis colorectal cancer. Several independent reports have shown that individuals constitutionally homozygous for MMR allelic variants develop early onset hematological malignancies often associated to features of neurofibromatosis type 1 (NF1) syndrome. The genetic mechanism of NF1 associated to MMR gene deficiency is not fully known. We report here that a child with this form of NF1 displays a heterozygous NF1 gene mutation (c.3721C>T), in addition to a homozygous MLH1 gene mutation (c.676C>T) leading to a truncated MLH1 protein (p.R226X). The parents did not display NF1 features nor the NF1 mutation. This new NF1 gene mutation is recurrent and predicts a truncated neurofibromin (p.R1241X) lacking its GTPase activating function, as well as all C-terminally located functional domains. Our findings suggest that NF1 disease observed in individuals homozygous for deleterious MMR variants may be due to a concomitant NF1 gene mutation. The presence of both homozygous MLH1 and heterozygous NF1 mutation in the child studied here also provides a mechanistic explanation for early onset malignancies that are observed in affected individuals. It also provides a model for cooperation between genetic alterations in human carcinogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Genes de Neurofibromatosis 1 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Neurofibromatosis 1/genética , Proteínas Nucleares/genética , Consanguinidad , Homocigoto , Humanos , Lactante , Masculino , Homólogo 1 de la Proteína MutL , Linaje
14.
Biochem Biophys Res Commun ; 345(4): 1487-96, 2006 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16730657

RESUMEN

The function of sodium iodide symporter (Na(+)/I(-) symporter, or NIS) in mammary epithelial cells is essential for the accumulation of I(-) in milk; the newborn's first source of I(-) for thyroid hormone synthesis. Furthermore, increased mammary gland NIS expression has previously been shown in human breast cancer. Several hormones and factors including all-trans-retinoic acid (tRA) regulate the expression of NIS. In this study, using breast cancer cell lines, we established that tRA-responsive NIS expression is confined to estrogen receptor-alpha (ERalpha) positive cells and we investigated the role of ERalpha in the regulation of NIS expression. We showed that the suppression of endogenous ERalpha by RNA interference downregulates NIS expression in ERalpha positive mammary cells. Besides, in an ERalpha negative cell line, reintroduction of ERalpha resulted in the expression of NIS in a ligand-independent manner. We also identified a novel estrogen-responsive element in the promoter region of NIS that specifically binds ERalpha and mediates ERalpha-dependent activation of transcription. Our results indicate that unliganded ERalpha (apo-ERalpha) contributes to the regulation of NIS gene expression.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Simportadores/genética , Transcripción Genética/genética , Secuencia de Bases , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Receptor alfa de Estrógeno/genética , Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Elementos de Respuesta/genética , Receptor alfa de Ácido Retinoico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA