Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Cell Death Dis ; 15(5): 322, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719798

RESUMEN

Metastatic dissemination from the primary tumor is a complex process that requires crosstalk between tumor cells and the surrounding milieu and involves the interplay between numerous cellular-signaling programs. Epithelial-mesenchymal transition (EMT) remains at the forefront of orchestrating a shift in numerous cellular programs, such as stemness, drug resistance, and apoptosis that allow for successful metastasis. Till date, there is limited success in therapeutically targeting EMT. Utilizing a high throughput screen of FDA-approved compounds, we uncovered a novel role of the topoisomerase inhibitor, Teniposide, in reversing EMT. Here, we demonstrate Teniposide as a potent modulator of the EMT program, specifically through an IRF7-NMI mediated response. Furthermore, Teniposide significantly reduces the expression of the key EMT transcriptional regulator, Zinc Finger E-Box Binding Homeobox 2 (ZEB2). ZEB2 downregulation by Teniposide inhibited RNA polymerase I (Pol I) activity and rRNA biogenesis. Importantly, Teniposide treatment markedly reduced pulmonary colonization of breast cancer cells. We have uncovered a novel role of Teniposide, which when used at a very low concentration, mitigates mesenchymal-like invasive phenotype. Overall, its ability to target EMT and rRNA biogenesis makes Teniposide a viable candidate to be repurposed as a therapeutic option to restrict breast cancer metastases.


Asunto(s)
Neoplasias de la Mama , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , ARN Polimerasa I , Tenipósido , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , ARN Polimerasa I/metabolismo , Tenipósido/farmacología , Animales , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
2.
Oncogenesis ; 10(6): 45, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078871

RESUMEN

Molecular dynamics of developmental processes are repurposed by cancer cells to support cancer initiation and progression. Disruption of the delicate balance between cellular differentiation and plasticity during mammary development leads to breast cancer initiation and metastatic progression. STAT5A is essential for differentiation of secretory mammary alveolar epithelium. Active STAT5A characterizes breast cancer patients for favorable prognosis. N-Myc and STAT Interactor protein (NMI) was initially discovered as a protein that interacts with various STATs; however, the relevance of these interactions to normal mammary development and cancer was not known. We observe that NMI protein is expressed in the mammary ductal epithelium at the onset of puberty and is induced in pregnancy. NMI protein is decreased in 70% of patient specimens with metastatic breast cancer compared to primary tumors. Here we present our finding that NMI and STAT5A cooperatively mediate normal mammary development. Loss of NMI in vivo caused a decrease in STAT5A activity in normal mammary epithelial as well as breast cancer cells. Analysis of STAT5A mammary specific controlled genetic program in the context of NMI knockout revealed ISG20 (interferon stimulated exonuclease gene 20, a protein involved in rRNA biogenesis) as an unfailing negatively regulated target. Role of ISG20 has never been described in metastatic process of mammary tumors. We observed that overexpression of ISG20 is increased in metastases compared to matched primary breast tumor tissues. Our observations reveal that NMI-STAT5A mediated signaling keeps a check on ISG20 expression via miR-17-92 cluster. We show that uncontrolled ISG20 expression drives tumor progression and metastasis.

3.
Cancer Lett ; 517: 24-34, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052331

RESUMEN

Obesity and diabetes cumulatively create a distinct systemic metabolic pathophysiological syndrome that predisposes patients to several diseases including breast cancer. Moreover, diabetic and obese women with breast cancer show a significant increase in mortality compared to non-obese and/or non-diabetic women. We hypothesized that these metabolic conditions incite an aggressive tumor phenotype by way of impacting tumor cell-autonomous and tumor cell non-autonomous events. In this study, we established a type 2 diabetic mouse model of triple-negative mammary carcinoma and investigated the effect of a glucose lowering therapy, metformin, on the overall tumor characteristics and immune/metabolic microenvironment. Diabetic mice exhibited larger mammary tumors that had increased adiposity with high levels of O-GlcNAc protein post-translational modification. These tumors also presented with a distinct stromal profile characterized by altered collagen architecture, increased infiltration by tumor-permissive M2 macrophages, and early metastatic seeding compared to non-diabetic/lean mice. Metformin treatment of the diabetic/obese mice effectively normalized glucose levels, reconfigured the mammary tumor milieu, and decreased metastatic seeding. Our results highlight the impact of two metabolic complications of obesity and diabetes on tumor cell attributes and showcase metformin's ability to revert tumor cell and stromal changes induced by an obese and diabetic host environment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Glucosa/metabolismo , Neoplasias Mamarias Animales/metabolismo , Síndrome Metabólico/metabolismo , Microambiente Tumoral/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Femenino , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA