Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Rep ; 42(10): 113305, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37864798

RESUMEN

Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.


Asunto(s)
Oxitocina , Núcleo Hipotalámico Paraventricular , Ratones , Animales , Oxitocina/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Analgésicos Opioides/farmacología , Neuronas/metabolismo , Saciedad , Colecistoquinina/metabolismo
2.
Transl Psychiatry ; 12(1): 318, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941105

RESUMEN

The prosocial neuropeptide oxytocin is being developed as a potential treatment for various neuropsychiatric disorders including autism spectrum disorder (ASD). Early studies using intranasal oxytocin in patients with ASD yielded encouraging results and for some time, scientists and affected families placed high hopes on the use of intranasal oxytocin for behavioral therapy in ASD. However, a recent Phase III trial obtained negative results using intranasal oxytocin for the treatment of behavioral symptoms in children with ASD. Given the frequently observed autism-like behavioral phenotypes in Prader-Willi and Schaaf-Yang syndromes, it is unclear whether oxytocin treatment represents a viable option to treat behavioral symptoms in these diseases. Here we review the latest findings on intranasal OT treatment, Prader-Willi and Schaaf-Yang syndromes, and propose novel research strategies for tailored oxytocin-based therapies for affected individuals. Finally, we propose the critical period theory, which could explain why oxytocin-based treatment seems to be most efficient in infants, but not adolescents.


Asunto(s)
Trastorno del Espectro Autista , Síndrome de Prader-Willi , Administración Intranasal , Artrogriposis , Trastorno del Espectro Autista/tratamiento farmacológico , Anomalías Craneofaciales , Humanos , Hipopituitarismo , Discapacidad Intelectual , Oxitocina/uso terapéutico , Síndrome de Prader-Willi/tratamiento farmacológico , Proyectos de Investigación
3.
Geroscience ; 43(3): 1405-1422, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33410092

RESUMEN

Chronic hypoperfusion is a key contributor to cognitive decline and neurodegenerative conditions, but the cellular mechanisms remain ill-defined. Using a multidisciplinary approach, we sought to elucidate chronic hypoperfusion-evoked functional changes at the neurovascular unit. We used bilateral common carotid artery stenosis (BCAS), a well-established model of vascular cognitive impairment, combined with an ex vivo preparation that allows pressurization of parenchymal arterioles in a brain slice. Our results demonstrate that mild (~ 30%), chronic hypoperfusion significantly altered the functional integrity of the cortical neurovascular unit. Although pial cerebral perfusion recovered over time, parenchymal arterioles progressively lost tone, exhibiting significant reductions by day 28 post-surgery. We provide supportive evidence for reduced adenosine 1 receptor-mediated vasoconstriction as a potential mechanism in the adaptive response underlying the reduced baseline tone in parenchymal arterioles. In addition, we show that in response to the neuromodulator adenosine, the action potential frequency of cortical pyramidal neurons was significantly reduced in all groups. However, a significant decrease in adenosine-induced hyperpolarization was observed in BCAS 14 days. At the microvascular level, constriction-induced inhibition of pyramidal neurons was significantly compromised in BCAS mice. Collectively, these results suggest that BCAS uncouples vessel-to-neuron communication-vasculo-neuronal coupling-a potential early event in cognitive decline.


Asunto(s)
Circulación Cerebrovascular , Disfunción Cognitiva , Animales , Arteriolas , Comunicación , Ratones , Neuronas
4.
Psychoneuroendocrinology ; 106: 77-84, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30954921

RESUMEN

Chemogenetics provides cell type-specific remote control of neuronal activity. Here, we describe the application of chemogenetics used to specifically activate oxytocin (OT) neurons as representatives of a unique class of neuroendocrine cells. We injected recombinant adeno-associated vectors, driving the stimulatory subunit hM3Dq of a modified human muscarinic receptor into the rat hypothalamus to achieve cell type-specific expression in OT neurons. As chemogenetic activation of OT neurons has not been reported, we provide systematic analysis of the temporal dynamics of OT neuronal responses in vivo by monitoring calcium fluctuations in OT neurons, and intracerebral as well as peripheral release of OT. We further provide evidence for the efficiency of chemogenetic manipulation at behavioral levels, demonstrating that evoked activation of OT neurons leads to social motivation and anxiolysis. Altogether, our results will be profitable for researchers working on the physiology of neuroendocrine systems, peptidergic modulation of behaviors and translational psychiatry.


Asunto(s)
Neuronas/metabolismo , Oxitocina/metabolismo , Receptores de Oxitocina/metabolismo , Animales , Conducta Animal/fisiología , Calcio/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Oxitocina/farmacología , Ratas , Ratas Wistar , Receptores Muscarínicos/metabolismo , Conducta Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA