Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261399

RESUMEN

Adenovirus protein VII (pVII) plays a crucial role in the nuclear localization of genomic DNA following viral infection and contains nuclear localization signal (NLS) sequences for the importin (IMP)-mediated nuclear import pathway. However, functional analysis of pVII in adenoviruses to date has failed to fully determine the underlying mechanisms responsible for nuclear import of pVII. Therefore, in the present study, we extended our analysis by examining the nuclear trafficking of adenovirus pVII from a non-human species, psittacine siadenovirus F (PsSiAdV). We identified a putative classical (c)NLS at pVII residues 120-128 (120PGGFKRRRL128). Fluorescence polarization and electrophoretic mobility shift assays demonstrated direct, high-affinity interaction with both IMPα2 and IMPα3 but not IMPß. Structural analysis of the pVII-NLS/IMPα2 complex confirmed a classical interaction, with the major binding site of IMPα occupied by K124 of pVII-NLS. Quantitative confocal laser scanning microscopy showed that PsSiAdV pVII-NLS can confer IMPα/ß-dependent nuclear localization to GFP. PsSiAdV pVII also localized in the nucleus when expressed in the absence of other viral proteins. Importantly, in contrast to what has been reported for HAdV pVII, PsSiAdV pVII does not localize to the nucleolus. In addition, our study demonstrated that inhibition of the IMPα/ß nuclear import pathway did not prevent PsSiAdV pVII nuclear targeting, indicating the existence of alternative pathways for nuclear localization, similar to what has been previously shown for human adenovirus pVII. Further examination of other potential NLS signals, characterization of alternative nuclear import pathways, and investigation of pVII nuclear targeting across different adenovirus species is recommended to fully elucidate the role of varying nuclear import pathways in the nuclear localization of pVII.


Asunto(s)
Siadenovirus , Transporte Activo de Núcleo Celular , Transporte de Proteínas , Señales de Localización Nuclear/genética , Carioferinas
2.
Protein Sci ; 33(2): e4876, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108201

RESUMEN

Nucleocytoplasmic transport regulates the passage of proteins between the nucleus and cytoplasm. In the best characterized pathway, importin (IMP) α bridges cargoes bearing basic, classical nuclear localization signals (cNLSs) to IMPß1, which mediates transport through the nuclear pore complex. IMPα recognizes three types of cNLSs via two binding sites: the major binding site accommodates monopartite cNLSs, the minor binding site recognizes atypical cNLSs, while bipartite cNLSs simultaneously interact with both major and minor sites. Despite the growing knowledge regarding IMPα-cNLS interactions, our understanding of the evolution of cNLSs is limited. We combined bioinformatic, biochemical, functional, and structural approaches to study this phenomenon, using polyomaviruses (PyVs) large tumor antigens (LTAs) as a model. We characterized functional cNLSs from all human (H)PyV LTAs, located between the LXCXE motif and origin binding domain. Surprisingly, the prototypical SV40 monopartite NLS is not well conserved; HPyV LTA NLSs are extremely heterogenous in terms of structural organization, IMPα isoform binding, and nuclear targeting abilities, thus influencing the nuclear accumulation properties of full-length proteins. While several LTAs possess bipartite cNLSs, merkel cell PyV contains a hybrid bipartite cNLS whose upstream stretch of basic amino acids can function as an atypical cNLS, specifically binding to the IMPα minor site upon deletion of the downstream amino acids after viral integration in the host genome. Therefore, duplication of a monopartite cNLS and subsequent accumulation of point mutations, optimizing interaction with distinct IMPα binding sites, led to the evolution of bipartite and atypical NLSs binding at the minor site.


Asunto(s)
Antígenos de Neoplasias , Señales de Localización Nuclear , alfa Carioferinas , Humanos , Transporte Activo de Núcleo Celular/fisiología , alfa Carioferinas/genética , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Secuencia de Aminoácidos , Antígenos de Neoplasias/metabolismo , Núcleo Celular/metabolismo , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo
3.
Viruses ; 15(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36992421

RESUMEN

Human immunodeficiency virus 1 (HIV-1) viral protease (PR) is one of the most studied viral enzymes and a crucial antiviral target. Despite its well-characterized role in virion maturation, an increasing body of research is starting to focus on its ability to cleave host cell proteins. Such findings are apparently in contrast with the dogma of HIV-1 PR activity being restricted to the interior of nascent virions and suggest catalytic activity within the host cell environment. Given the limited amount of PR present in the virion at the time of infection, such events mainly occur during late viral gene expression, mediated by newly synthesized Gag-Pol polyprotein precursors, rather than before proviral integration. HIV-1 PR mainly targets proteins involved in three different processes: those involved in translation, those controlling cell survival, and restriction factors responsible for innate/intrinsic antiviral responses. Indeed, by cleaving host cell translation initiation factors, HIV-1 PR can impair cap-dependent translation, thus promoting IRES-mediated translation of late viral transcripts and viral production. By targeting several apoptotic factors, it modulates cell survival, thus promoting immune evasion and viral dissemination. Additionally, HIV-1 PR counteracts restriction factors incorporated in the virion that would otherwise interfere with nascent virus vitality. Thus, HIV-1 PR appears to modulate host cell function at different times and locations during its life cycle, thereby ensuring efficient viral persistency and propagation. However, we are far from having a complete picture of PR-mediated host cell modulation, which is emerging as a field that needs further investigation.


Asunto(s)
Proteínas de Fusión gag-pol , Proteasa del VIH , Humanos , Proteasa del VIH/genética , Proteasa del VIH/metabolismo , Proteolisis , Proteínas de Fusión gag-pol/metabolismo , Endopeptidasas/metabolismo , Virión/metabolismo , Antivirales
4.
J Cell Mol Med ; 26(14): 3977-3994, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35706382

RESUMEN

Human epithelial stem cells (ESCs) are characterized by long-term regenerative properties, much dependent on the tissue of origin and varying during their lifespan. We analysed such variables in cultures of ESCs isolated from the skin, conjunctiva, limbus and oral mucosa of healthy donors and patients affected by ectrodactyly-ectodermal dysplasia-clefting syndrome, a rare genetic disorder caused by mutations in the p63 gene. We cultured cells until exhaustion in the presence or in the absence of DAPT (γ-secretase inhibitor; N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine T-butyl ester). All cells were able to differentiate in vitro but exhibited variable self-renewal potential. In particular, cells carrying p63 mutations stopped prematurely, compared with controls. Importantly, administration of DAPT significantly extended the replicative properties of all stem cells under examination. RNA sequencing analysis revealed that distinct sets of genes were up- or down-regulated during their lifetime, thus allowing to identify druggable gene networks and off-the-shelf compounds potentially dealing with epithelial stem cell senescence. These data will expand our knowledge on the genetic bases of senescence and potentially pave the way to the pharmacological modulation of ageing in epithelial stem cells.


Asunto(s)
Labio Leporino , Fisura del Paladar , Displasia Ectodérmica , Labio Leporino/diagnóstico , Fisura del Paladar/diagnóstico , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Humanos , Inhibidores de Agregación Plaquetaria , Células Madre
5.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34439242

RESUMEN

Human papillomavirus is the most common viral infectious agent responsible for cancer development in humans. High-risk strains are known to induce cancer through the expression of the viral oncogenes E6 and E7, yet we have only a partial understanding of the precise mechanisms of action of these viral proteins. Here we investigated the molecular mechanism through which the oncoprotein E6 alters the Hippo-YAP/TAZ pathway to trigger YAP/TAZ induction in cancer cells. By employing E6 overexpression systems combined with protein-protein interaction studies and loss-of-function approaches, we discovered that the E6-mediated targeting of hScrib, which supports YAP/TAZ upregulation, intimately requires E6 homodimerization. We show that the self-association of E6, previously reported only in vitro, takes place in the cytoplasm and, as a dimer, E6 targets the fraction of hScrib at the cell cortex for proteasomal degradation. Thus, E6 homodimerization emerges as an important event in the mechanism of E6-mediated hScrib targeting to sustain downstream YAP/TAZ upregulation, unraveling for the first time the key role of E6 homodimerization in the context of its transforming functions and thus paving the way for the possible development of E6 dimerization inhibitors.

6.
Viruses ; 12(9)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962117

RESUMEN

Despite the introduction of directly acting antivirals (DAAs), for the treatment of hepatitis C virus (HCV) infection, their cost, patient compliance, and viral resistance are still important issues to be considered. Here, we describe the generation of a novel JFH1-based HCV subgenomic replicon double reporter cell line suitable for testing different antiviral drugs and therapeutic interventions. This cells line allowed a rapid and accurate quantification of cell growth/viability and HCV RNA replication, thus discriminating specific from unspecific antiviral effects caused by DAAs or cytotoxic compounds, respectively. By correlating cell number and virus replication, we could confirm the inhibitory effect on the latter of cell over confluency and characterize an array of lentiviral vectors expressing single, double, or triple cassettes containing different combinations of short hairpin (sh)RNAs, targeting both highly conserved viral genome sequences and cellular factors crucial for HCV replication. While all vectors were effective in reducing HCV replication, the ones targeting viral sequences displayed a stronger antiviral effect, without significant cytopathic effects. Such combinatorial platforms as well as the developed double reporter cell line might find application both in setting-up anti-HCV gene therapy approaches and in studies aimed at further dissecting the viral biology/pathogenesis of infection.


Asunto(s)
Antivirales/farmacología , Vectores Genéticos , Lentivirus/genética , ARN Interferente Pequeño/genética , Replicación Viral/efectos de los fármacos , Línea Celular Tumoral , Terapia Genética , Genoma Viral , Células HEK293 , Hepacivirus/genética , Hepatitis C/virología , Humanos , ARN Interferente Pequeño/metabolismo , Replicón/efectos de los fármacos , Proteínas no Estructurales Virales/genética
7.
Int J Mol Med ; 43(6): 2303-2318, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31017260

RESUMEN

Down syndrome (DS) is caused by the presence of part or all of a third copy of chromosome 21. DS is associated with several phenotypes, including intellectual disability, congenital heart disease, childhood leukemia and immune defects. Specific microRNAs (miRNAs/miR) have been described to be associated with DS, although none of them so far have been unequivocally linked to the pathology. The present study focuses to the best of our knowledge for the first time on the miRNAs contained in nanosized RNA carriers circulating in the blood. Fractions enriched in nanosized RNA­carriers were separated from the plasma of young participants with DS and their non­trisomic siblings and miRNAs were extracted. A microarray­based analysis on a small cohort of samples led to the identification of the three most abundant miRNAs, namely miR­16­5p, miR­99b­5p and miR­144­3p. These miRNAs were then profiled for 15 pairs of DS and non­trisomic sibling couples by reverse transcription­quantitative polymerase chain reaction (RT­qPCR). Results identified a clear differential expression trend of these miRNAs in DS with respect to their non­trisomic siblings and gene ontology analysis pointed to their potential role in a number of typical DS features, including 'nervous system development', 'neuronal cell body' and certain forms of 'leukemia'. Finally, these expression levels were associated with certain typical quantitative and qualitative clinical features of DS. These results contribute to the efforts in defining the DS­associated pathogenic mechanisms and emphasize the importance of properly stratifying the miRNA fluid vehicles in order to probe biomolecules that are otherwise hidden and/or not accessible to (standard) analysis.


Asunto(s)
Síndrome de Down/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Síndrome de Down/sangre , Femenino , Humanos , Masculino , MicroARNs/sangre , MicroARNs/aislamiento & purificación , Nanopartículas/química , Adulto Joven
8.
Cell Reprogram ; 20(4): 215-224, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29989433

RESUMEN

Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome is a rare monogenic disease with autosomal dominant inheritance caused by mutations in the TP63 gene, leading to progressive corneal keratinocyte loss, limbal stem cell deficiency (LSCD), and eventually blindness. Currently, there is no treatment available to cure or slow down the keratinocyte loss. Human oral mucosal epithelial stem cells (hOMESCs), which are a mixed population of keratinocyte precursor stem cells, are used as source of autologous tissue for treatment of bilateral LSCD. However, hOMESCs from EEC patients have a reduced life span due to TP63 mutations and cannot be used for autologous transplantation. Human induced pluripotent stem cells (hiPSCs) represent a potentially unlimited source of autologous limbal stem cell for EEC patients and can be genetically modified by genome editing technologies to correct the disease ex vivo before transplantation. In this study, we describe for the first time the generation of integration-free EEC-hiPSCs from hOMESCs of EEC patients by Sendai virus vector and episomal vector-based reprogramming. The generated hiPSC clones expressed pluripotency markers and were successfully differentiated into derivatives of the three germ layers, as well as toward corneal epithelium. These cells may be used for EEC disease modeling and open perspectives for applications in cell therapy of LSCD.


Asunto(s)
Biomarcadores/análisis , Diferenciación Celular , Labio Leporino/patología , Fisura del Paladar/patología , Displasia Ectodérmica/patología , Células Madre Pluripotentes Inducidas/patología , Mucosa Bucal/patología , Células Cultivadas , Labio Leporino/genética , Labio Leporino/metabolismo , Fisura del Paladar/genética , Fisura del Paladar/metabolismo , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mucosa Bucal/metabolismo , Mutación , Fenotipo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
9.
Biochim Biophys Acta Mol Cell Res ; 1865(8): 1114-1129, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29750988

RESUMEN

Nuclear import involves the recognition by importin (IMP) superfamily members of nuclear localization signals (NLSs) within protein cargoes destined for the nucleus, the best understood being recognition of classical NLSs (cNLSs) by the IMPα/ß1 heterodimer. Although the cNLS consensus [K-(K/R)-X-(K/R) for positions P2-P5] is generally accepted, recent studies indicated that the contribution made by different residues at the P4 position can vary. Here, we apply a combination of microscopy, molecular dynamics, crystallography, in vitro binding, and bioinformatics approaches to show that the nature of residues at P4 indeed modulates cNLS function in the context of a prototypical Simian Virus 40 large tumor antigen-derived cNLS (KKRK, P2-5). Indeed, all hydrophobic substitutions in place of R impaired binding to IMPα and nuclear targeting, with the largest effect exerted by a G residue at P4. Substitution of R with neutral hydrophobic residues caused the loss of electrostatic and van der Waals interactions between the P4 residue side chains and IMPα. Detailed bioinformatics analysis confirmed the importance of the P4 residue for cNLS function across the human proteome, with specific residues such as G being associated with low activity. Furthermore, we validate our findings for two additional cNLSs from human cytomegalovirus (HCMV) DNA polymerase catalytic subunit UL54 and processivity factor UL44, where a G residue at P4 results in a 2-3-fold decrease in NLS activity. Our results thus showed that the P4 residue makes a hitherto poorly appreciated contribution to nuclear import efficiency, which is essential to determining the precise nuclear levels of cargoes.


Asunto(s)
Carioferinas/metabolismo , Señales de Localización Nuclear/química , Señales de Localización Nuclear/metabolismo , Transporte Activo de Núcleo Celular , Sitios de Unión , Núcleo Celular/metabolismo , Biología Computacional , Cristalografía por Rayos X , Citomegalovirus/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas Virales/química , Proteínas Virales/metabolismo
10.
Microb Pathog ; 118: 146-153, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29551438

RESUMEN

Most enveloped viruses exploit complex cellular pathways for assembly and egress from the host cell, and the large DNA virus Herpes simplex virus 1 (HSV-1) makes no exception, hijacking several cellular transport pathways for its glycoprotein trafficking and maturation, as well as for viral morphogenesis and egress according to the envelopment, de-envelopment and re-envelopment model. Importantly Rab GTPases, widely distributed master regulators of intracellular membrane trafficking pathways, have recently being tightly implicated in such process. Indeed, siRNA-mediated genetic ablation of specific Rab proteins differently affected HSV-1 production, suggesting a complex role of different Rab proteins in HSV-1 life cycle. In this review, we discuss how different Rabs can regulate HSV-1 assembly/egress and the potential therapeutic applications of such findings for the management of HSV-1 infections.


Asunto(s)
Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Fenómenos Fisiológicos de los Virus , Liberación del Virus/fisiología , Proteínas de Unión al GTP rab/fisiología , Glicoproteínas/metabolismo , Herpesvirus Humano 1/patogenicidad , Humanos , Transporte de Proteínas/fisiología , Proteínas del Envoltorio Viral/fisiología , Proteínas Virales/genética , Ensamble de Virus/fisiología , Proteínas de Unión al GTP rab1/fisiología , Proteínas rab27 de Unión a GTP/fisiología , Proteínas de Unión al GTP rab5/fisiología
11.
Stem Cell Res ; 28: 177-180, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29547871

RESUMEN

Human oral mucosa epithelial stem cells (hOMESCs) were obtained from a fresh oral biopsy collected from a healthy subject at the Fondazione Banca degli Occhi del Veneto (FBOV). An integration-free reprogramming protocol was applied exploiting episomal plasmids transfected into cells using a Nucleofector device. Around day 20 post transfection, several human induced pluripotent stem cell (hiPSC) colonies were manually picked and expanded. One of these (UNIPDi001-A-hiPSCs) expressed undifferentiated state marker alkaline phosphatase along with a panel of pluripotency state markers and was able to differentiate into the derivatives of all the three germ layers.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Epiteliales/citología , Células Madre Pluripotentes Inducidas/citología , Mucosa Bucal/citología , Células Madre/citología , Transgenes , Biomarcadores/metabolismo , Línea Celular , Cuerpos Embrioides/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Plásmidos/metabolismo , Células Madre/metabolismo
12.
Biochem J ; 475(8): 1455-1472, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29599122

RESUMEN

Intersectin 1-short (ITSN1-s) is a 1220 amino acid ubiquitously expressed scaffold protein presenting a multidomain structure that allows to spatiotemporally regulate the functional interaction of a plethora of proteins. Besides its well-established role in endocytosis, ITSN1-s is involved in the regulation of cell signaling and is implicated in tumorigenesis processes, although the signaling pathways involved are still poorly understood. Here, we identify ITSN1-s as a nucleocytoplasmic trafficking protein. We show that, by binding to importin (IMP)α, a small fraction of ITSN1-s localizes in the cell nucleus at the steady state, where it preferentially associates with the nuclear envelope and interacts with lamin A/C. However, upon pharmacological ablation of chromosome region maintenance 1 (CRM-1)-dependent nuclear export pathway, the protein accumulates into the nucleus, thus revealing its moonlighting nature. Analysis of deletion mutants revealed that the coiled coil (CC) and Src homology (SH3) regions play the major role in its nucleocytoplasmic shuttling. While no evidence of nuclear localization signal (NLS) was detected in the CC region, a functional bipartite NLS was identified within the SH3D region of ITSN1-s (RKKNPGGWWEGELQARGKKRQIGW-1127), capable of conferring energy-dependent nuclear accumulation to reporter proteins and whose mutational ablation affects nuclear import of the whole SH3 region. Thus, ITSN1-s is an endocytic protein, which shuttles between the nucleus and the cytoplasm in a CRM-1- and IMPα-dependent fashion.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Endocitosis/fisiología , alfa Carioferinas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Señales de Localización Nuclear , alfa Carioferinas/genética
13.
Stem Cell Res ; 28: 149-152, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29486400

RESUMEN

Transgene free UNIPDi002-A-human induced pluripotent stem cell (hiPSC) line was generated by Sendai Virus Vectors reprogramming from human oral mucosal epithelial stem cells (hOMESCs) of a patient affected by ectrodactyly-ectodermal dysplasia-clefting (EEC)-syndrome, carrying a mutation in exon 8 of the TP63 gene (R304Q). The UNIPDi002-A-hiPSC line retained the mutation of the parental R304Q-hOMESCs and displayed a normal karyotype. No residual expression of transgenes nor Sendai virus vector sequences were detected in the line at passage 8. UNIPDi002-A-hiPSC expressed a panel of pluripotency-associated markers and could form embryoid bodies expressing markers belonging to the three germ layers ectoderm, endoderm and mesoderm.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Epiteliales/patología , Células Madre Pluripotentes Inducidas/citología , Mucosa Bucal/patología , Mutación/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Transgenes , Proteínas Supresoras de Tumor/genética , Adolescente , Animales , Línea Celular , Reprogramación Celular , Análisis Mutacional de ADN , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Femenino , Vectores Genéticos/metabolismo , Humanos , Ratones , Virus Sendai/genética
14.
Stem Cell Res ; 28: 141-144, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29477592

RESUMEN

Oral mucosa epithelial stem cells from a patient affected by Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome carrying the R279H mutation in the TP63 gene were reprogrammed into human induced pluripotent stem cells (hiPSCs) with episomal vectors. The generated UNIPDi003-A-hPSC line retained the mutation of the parental cells and showed a normal karyotype upon long term culture. Analysis of residual transgenes expression showed that the episomal vectors were eliminated from the cell line. UNIPDi003-A-hiPSCs expressed the undifferentiated state marker alkaline phosphatase along with a panel of pluripotency markers, and formed embryoid bodies capable of expressing markers belonging to all the three germ layers.


Asunto(s)
Labio Leporino/patología , Fisura del Paladar/patología , Displasia Ectodérmica/patología , Células Madre Pluripotentes Inducidas/citología , Mutación/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Animales , Línea Celular , Reprogramación Celular , Cuerpos Embrioides/citología , Femenino , Humanos , Cariotipificación , Ratones , Análisis de Secuencia de ADN , Transgenes
15.
World J Virol ; 2(2): 16-7, 2013 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24175226

RESUMEN

Viruses and their hosts have co-evolved for million years. In order to successfully replicate their genome, viruses need to usurp the biosynthetic machinery of the host cell. Depending on the complexity and the nature of the genome, replication might involve or not a relatively large subset of viral products, in addition to a number of host cell factors, and take place in several subcellular compartments, including the nucleus, the cytoplasm, as well as virus-induced, rearranged membranes. Therefore viruses need to ensure the correct subcellular localization of their effectors and to be capable of disguising from the cellular defensive mechanisms. In addition, viruses are capable of exploiting host cell activities, by modulating their post-translational modification apparatus, resulting in profound modifications in the function of cellular and viral products. Not surprisingly infection of host cells by these parasites can lead to alterations of cellular differentiation and growing properties, with important pathogenic consequences. In the present hot topic highlight entitled "Reprogramming the host: modification of cell functions upon viral infection", a number of leading virologists and cell biologist thoroughly describe recent advances in our understanding of how viruses modulate cellular functions to achieve successful replication and propagation at the expenses of human cells.

16.
World J Virol ; 2(2): 102-9, 2013 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24175234

RESUMEN

Human oncogenic viruses are defined as necessary but not sufficient to initiate cancer. Experimental evidence suggests that the oncogenic potential of a virus is effective in cells that have already accumulated a number of genetic mutations leading to cell cycle deregulation. Current models for viral driven oncogenesis cannot explain why tumor development in carriers of tumorigenic viruses is a very rare event, occurring decades after virus infection. Considering that viruses are mutagenic agents per se and human oncogenic viruses additionally establish latent and persistent infections, we attempt here to provide a general mechanism of tumor initiation both for RNA and DNA viruses, suggesting viruses could be both necessary and sufficient in triggering human tumorigenesis initiation. Upon reviewing emerging evidence on the ability of viruses to induce DNA damage while subverting the DNA damage response and inducing epigenetic disturbance in the infected cell, we hypothesize a general, albeit inefficient hit and rest mechanism by which viruses may produce a limited reservoir of cells harboring permanent damage that would be initiated when the virus first hits the cell, before latency is established. Cells surviving virus generated damage would consequently become more sensitive to further damage mediated by the otherwise insufficient transforming activity of virus products expressed in latency, or upon episodic reactivations (viral persistence). Cells with a combination of genetic and epigenetic damage leading to a cancerous phenotype would emerge very rarely, as the probability of such an occurrence would be dependent on severity and frequency of consecutive hit and rest cycles due to viral reinfections and reactivations.

17.
PLoS One ; 8(8): e71412, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940750

RESUMEN

Fetal membranes (FM) derived mesenchymal stromal/stem cells (MSCs) are higher in number, expansion and differentiation abilities compared with those obtained from adult tissues, including bone marrow. Upon systemic administration, ex vivo expanded FM-MSCs preferentially home to damaged tissues promoting regenerative processes through their unique biological properties. These characteristics together with their immune-privileged nature and immune suppressive activity, a low infection rate and young age of placenta compared to other sources of SCs make FM-MSCs an attractive target for cell-based therapy and a valuable tool in regenerative medicine, currently being evaluated in clinical trials. In the present study we investigated the permissivity of FM-MSCs to all members of the human Herpesviridae family, an issue which is relevant to their purification, propagation, conservation and therapeutic use, as well as to their potential role in the vertical transmission of viral agents to the fetus and to their potential viral vector-mediated genetic modification. We present here evidence that FM-MSCs are fully permissive to infection with Herpes simplex virus 1 and 2 (HSV-1 and HSV-2), Varicella zoster virus (VZV), and Human Cytomegalovirus (HCMV), but not with Epstein-Barr virus (EBV), Human Herpesvirus-6, 7 and 8 (HHV-6, 7, 8) although these viruses are capable of entering FM-MSCs and transient, limited viral gene expression occurs. Our findings therefore strongly suggest that FM-MSCs should be screened for the presence of herpesviruses before xenotransplantation. In addition, they suggest that herpesviruses may be indicated as viral vectors for gene expression in MSCs both in gene therapy applications and in the selective induction of differentiation.


Asunto(s)
Infecciones por Herpesviridae/virología , Células Madre Mesenquimatosas/virología , Placenta/virología , Adulto , Animales , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Susceptibilidad a Enfermedades , Embrión de Mamíferos , Femenino , Infecciones por Herpesviridae/patología , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Células Madre Mesenquimatosas/patología , Placenta/patología , Embarazo , Células Vero
18.
FASEB J ; 26(3): 1181-93, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22155563

RESUMEN

Fundamental to eukaryotic cell function, nucleocytoplasmic transport can be regulated at many levels, including through modulation of the importin/exportin (Imp/Exp) nuclear transport machinery itself. Although Imps/Exps are overexpressed in a number of transformed cell lines and patient tumor tissues, the efficiency of nucleocytoplasmic transport in transformed cell types compared with nontransformed cells has not been investigated. Here we use quantitative live cell imaging of 3 isogenic nontransformed/transformed cell pairs to show that nuclear accumulation of nuclear localization signal (NLS)-containing proteins, but not their NLS-mutated derivatives, is increased up to 7-fold in MCF10CA1h human epithelial breast carcinoma cells and in simian virus 40 (SV40)-transformed fibroblasts of human and monkey origin, compared with their nontransformed counterparts. The basis for this appears to be a significantly faster rate of nuclear import in transformed cell types, as revealed by analysis using fluorescence recovery after photobleaching for the human MCF10A/MCF10CA1h cell pair. Nuclear accumulation of NLS/nuclear export signal-containing (shuttling) proteins was also enhanced in transformed cell types, experiments using the nuclear export inhibitor leptomycin B demonstrating that efficient Exp-1-mediated nuclear export was not impaired in transformed compared with nontransformed cells. Enhanced nuclear import and export efficiencies were found to correlate with 2- to 4-fold higher expression of specific Imps/Exps in transformed cells, as indicated by quantitative Western blot analysis, with ectopic expression of Imps able to enhance NLS nuclear accumulation levels up to 5-fold in nontransformed MCF10A cells. The findings indicate that transformed cells possess altered nuclear transport properties, most likely due to the overexpression of Imps/Exps. The findings have important implications for the development of tumor-specific drug nanocarriers in anticancer therapy.


Asunto(s)
Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Señales de Localización Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Western Blotting , Células COS , Línea Celular , Línea Celular Transformada , Línea Celular Tumoral , Chlorocebus aethiops , Ácidos Grasos Insaturados/farmacología , Fibroblastos/citología , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Microscopía Confocal , Mutación , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
19.
FASEB J ; 24(5): 1454-66, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20040518

RESUMEN

This study describes for the first time the ability of the novel BRCA1-binding protein 2 (BRAP2) to inhibit the nuclear import of specific viral proteins dependent on phosphorylation. Ectopic expression of BRAP2 in transfected African green monkey kidney COS-7 cells was found to significantly reduce nuclear localization signal (NLS)-dependent nuclear accumulation of either simian virus SV40 large-tumor antigen (T-ag) or human cytomegalovirus DNA polymerase processivity factor ppUL44; this was also observed in HL-60 human promyelocytic leukemia cells on induction of BRAP2 expression by vitamin D3 treatment. BRAP2 inhibition of nuclear accumulation was dependent on phosphorylation sites flanking the respective NLSs, where substitution of the cyclin-dependent kinase site T124 of T-ag with Ala or Asp prevented or enhanced BRAP2 inhibition of nuclear import, respectively. Substitution of T427 within the NLS of ppUL44 gave similar results, whereas no effect of BRAP2 was observed on nuclear targeting of other viral proteins, such as herpes simplex virus-1 pUL30, which lacks a phosphorylation site near its NLS, and the human immunodeficiency virus-1 Tat protein. Pulldowns/AlphaScreen assays indicated direct, high-affinity binding of BRAP2(442-592) to T-ag(111-135), strictly dependent on negative charge at T124 and the NLS. All results are consistent with BRAP2 being a novel, phosphorylation-regulated negative regulator of nuclear import, with potential as an antiviral agent.


Asunto(s)
Núcleo Celular/metabolismo , Señales de Localización Nuclear/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Antígenos Transformadores de Poliomavirus/metabolismo , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Células HL-60 , Humanos , Fosforilación , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores
20.
Int J Cancer ; 123(12): 2965-9, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18798550

RESUMEN

Chicken anemia virus viral protein 3 (VP3 or apoptin) localizes more efficiently in the nucleus of transformed than nontransformed cells. Although previous studies implicate the C-terminus of apoptin as being responsible, the molecular basis is controversial, and the extent to which altered nuclear transport efficiency in tumor cells may influence VP3 differential targeting unclear. Here we establish that the C-terminus of VP3 (residues 74-121), out of the context of the full-length protein, is indeed sufficient for tumor cell-enhanced nuclear targeting through phosphoinhibition of VP3 (74-121)-mediated nuclear export occurring exclusively in tumor cells. Importantly, we show that VP3 (74-121) is unique in showing tumor cell-enhanced nuclear targeting in that other NLS-containing proteins fail to show differential localization in human osteosarcoma cells compared to their normal isogenic counterparts. Thus, the C-terminus of VP3 represents a unique tumor cell-enhanced nuclear targeting module with potential application in tumor cell-specific drug delivery.


Asunto(s)
Proteínas de la Cápside/metabolismo , Señales de Localización Nuclear/metabolismo , Osteosarcoma/metabolismo , Secuencia de Aminoácidos , Sistemas de Liberación de Medicamentos , Humanos , Microscopía Confocal , Datos de Secuencia Molecular , Señales de Localización Nuclear/genética , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA