Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Leukemia ; 38(3): 521-529, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38245602

RESUMEN

Constitutional trisomy 21 (T21) is a state of aneuploidy associated with high incidence of childhood acute myeloid leukemia (AML). T21-associated AML is preceded by transient abnormal myelopoiesis (TAM), which is triggered by truncating mutations in GATA1 generating a short GATA1 isoform (GATA1s). T21-associated AML emerges due to secondary mutations in hematopoietic clones bearing GATA1s. Since aneuploidy generally impairs cellular fitness, the paradoxically elevated risk of myeloid malignancy in T21 is not fully understood. We hypothesized that individuals with T21 bear inherent genome instability in hematopoietic lineages that promotes leukemogenic mutations driving the genesis of TAM and AML. We found that individuals with T21 show increased chromosomal copy number variations (CNVs) compared to euploid individuals, suggesting that genome instability could be underlying predisposition to TAM and AML. Acquisition of GATA1s enforces myeloid skewing and maintenance of the hematopoietic progenitor state independently of T21; however, GATA1s in T21 hematopoietic progenitor cells (HPCs) further augments genome instability. Increased dosage of the chromosome 21 (chr21) gene DYRK1A impairs homology-directed DNA repair as a mechanism of elevated mutagenesis. These results posit a model wherein inherent genome instability in T21 drives myeloid malignancy in concert with GATA1s mutations.


Asunto(s)
Síndrome de Down , Leucemia Mieloide Aguda , Reacción Leucemoide , Trastornos Mieloproliferativos , Humanos , Niño , Síndrome de Down/complicaciones , Variaciones en el Número de Copia de ADN , Trastornos Mieloproliferativos/genética , Inestabilidad Genómica , Leucemia Mieloide Aguda/patología , Aneuploidia , Trisomía , Factor de Transcripción GATA1/genética
2.
Sci Adv ; 7(46): eabk0271, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767451

RESUMEN

Stem cells are remarkably small. Whether small size is important for stem cell function is unknown. We find that hematopoietic stem cells (HSCs) enlarge under conditions known to decrease stem cell function. This decreased fitness of large HSCs is due to reduced proliferation and was accompanied by altered metabolism. Preventing HSC enlargement or reducing large HSCs in size averts the loss of stem cell potential under conditions causing stem cell exhaustion. Last, we show that murine and human HSCs enlarge during aging. Preventing this age-dependent enlargement improves HSC function. We conclude that small cell size is important for stem cell function in vivo and propose that stem cell enlargement contributes to their functional decline during aging.

3.
Genes Dev ; 35(15-16): 1079-1092, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34266888

RESUMEN

Chromosome gains and losses are a frequent feature of human cancers. However, how these aberrations can outweigh the detrimental effects of aneuploidy remains unclear. An initial comparison of existing chromosomal instability (CIN) mouse models suggests that aneuploidy accumulates to low levels in these animals. We therefore developed a novel mouse model that enables unprecedented levels of chromosome missegregation in the adult animal. At the earliest stages of T-cell development, cells with random chromosome gains and/or losses are selected against, but CIN eventually results in the expansion of progenitors with clonal chromosomal imbalances. Clonal selection leads to the development of T-cell lymphomas with stereotypic karyotypes in which chromosome 15, containing the Myc oncogene, is gained with high prevalence. Expressing human MYC from chromosome 6 (MYCChr6) is sufficient to change the karyotype of these lymphomas to include universal chromosome 6 gains. Interestingly, while chromosome 15 is still gained in MYCChr6 tumors after genetic ablation of the endogenous Myc locus, this chromosome is not efficiently gained after deletion of one copy of Rad21, suggesting a synergistic effect of both MYC and RAD21 in driving chromosome 15 gains. Our results show that the initial detrimental effects of random missegregation are outbalanced by clonal selection, which is dictated by the chromosomal location and nature of certain genes and is sufficient to drive cancer with high prevalence.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica , Animales , Transformación Celular Neoplásica/genética , Inestabilidad Cromosómica/genética , Aberraciones Cromosómicas , Cariotipo , Ratones , Prevalencia , Células Madre
4.
Transl Sci Rare Dis ; 5(3-4): 99-129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34268067

RESUMEN

BACKGROUND: Recent advances in medical care have increased life expectancy and improved the quality of life for people with Down syndrome (DS). These advances are the result of both pre-clinical and clinical research but much about DS is still poorly understood. In 2020, the NIH announced their plan to update their DS research plan and requested input from the scientific and advocacy community. OBJECTIVE: The National Down Syndrome Society (NDSS) and the LuMind IDSC Foundation worked together with scientific and medical experts to develop recommendations for the NIH research plan. METHODS: NDSS and LuMind IDSC assembled over 50 experts across multiple disciplines and organized them in eleven working groups focused on specific issues for people with DS. RESULTS: This review article summarizes the research gaps and recommendations that have the potential to improve the health and quality of life for people with DS within the next decade. CONCLUSIONS: This review highlights many of the scientific gaps that exist in DS research. Based on these gaps, a multidisciplinary group of DS experts has made recommendations to advance DS research. This paper may also aid policymakers and the DS community to build a comprehensive national DS research strategy.

5.
Mol Biol Cell ; 32(17): 1557-1564, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34191542

RESUMEN

Aneuploid yeast cells are in a chronic state of proteotoxicity, yet do not constitutively induce the cytosolic unfolded protein response, or heat shock response (HSR) by heat shock factor 1 (Hsf1). Here, we demonstrate that an active environmental stress response (ESR), a hallmark of aneuploidy across different models, suppresses Hsf1 induction in models of single-chromosome gain. Furthermore, engineered activation of the ESR in the absence of stress was sufficient to suppress Hsf1 activation in euploid cells by subsequent heat shock while increasing thermotolerance and blocking formation of heat-induced protein aggregates. Suppression of the ESR in aneuploid cells resulted in longer cell doubling times and decreased viability in the presence of additional proteotoxicity. Last, we show that in euploids, Hsf1 induction by heat shock is curbed by the ESR. Strikingly, we found a similar relationship between the ESR and the HSR using an inducible model of aneuploidy. Our work explains a long-standing paradox in the field and provides new insights into conserved mechanisms of proteostasis with potential relevance to cancers associated with aneuploidy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/fisiología , Adaptación Biológica/genética , Aneuploidia , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico/genética , Proteínas de Choque Térmico/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética , Respuesta de Proteína Desplegada/genética
6.
EMBO Rep ; 22(8): e52032, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34105235

RESUMEN

The immune system plays a major role in the protection against cancer. Identifying and characterizing the pathways mediating this immune surveillance are thus critical for understanding how cancer cells are recognized and eliminated. Aneuploidy is a hallmark of cancer, and we previously found that untransformed cells that had undergone senescence due to highly abnormal karyotypes are eliminated by natural killer (NK) cells in vitro. However, the mechanisms underlying this process remained elusive. Here, using an in vitro NK cell killing system, we show that non-cell-autonomous mechanisms in aneuploid cells predominantly mediate their clearance by NK cells. Our data indicate that in untransformed aneuploid cells, NF-κB signaling upregulation is central to elicit this immune response. Inactivating NF-κB abolishes NK cell-mediated clearance of untransformed aneuploid cells. In cancer cell lines, NF-κB upregulation also correlates with the degree of aneuploidy. However, such upregulation in cancer cells is not sufficient to trigger NK cell-mediated clearance, suggesting that additional mechanisms might be at play during cancer evolution to counteract NF-κB-mediated immunogenicity.


Asunto(s)
Células Asesinas Naturales , FN-kappa B , Aneuploidia , Senescencia Celular/genética , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal
7.
Genes Dev ; 35(7-8): 556-572, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766983

RESUMEN

Aneuploidy, defined as whole-chromosome gain or loss, causes cellular stress but, paradoxically, is a frequent occurrence in cancers. Here, we investigate why ∼50% of Ewing sarcomas, driven by the EWS-FLI1 fusion oncogene, harbor chromosome 8 gains. Expression of the EWS-FLI1 fusion in primary cells causes replication stress that can result in cellular senescence. Using an evolution approach, we show that trisomy 8 mitigates EWS-FLI1-induced replication stress through gain of a copy of RAD21. Low-level ectopic expression of RAD21 is sufficient to dampen replication stress and improve proliferation in EWS-FLI1-expressing cells. Conversely, deleting one copy in trisomy 8 cells largely neutralizes the fitness benefit of chromosome 8 gain and reduces tumorgenicity of a Ewing sarcoma cancer cell line in soft agar assays. We propose that RAD21 promotes tumorigenesis through single gene copy gain. Such genes may explain some recurrent aneuploidies in cancer.


Asunto(s)
Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Sarcoma de Ewing/genética , Estrés Fisiológico/genética , Trisomía/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Cromosomas Humanos Par 8/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Duplicación de Gen/genética , Regulación Neoplásica de la Expresión Génica , Humanos
8.
Proc Natl Acad Sci U S A ; 117(48): 30566-30576, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33203674

RESUMEN

Aneuploidy, defined as whole chromosome gains and losses, is associated with poor patient prognosis in many cancer types. However, the condition causes cellular stress and cell cycle delays, foremost in G1 and S phase. Here, we investigate how aneuploidy causes both slow proliferation and poor disease outcome. We test the hypothesis that aneuploidy brings about resistance to chemotherapies because of a general feature of the aneuploid condition-G1 delays. We show that single chromosome gains lead to increased resistance to the frontline chemotherapeutics cisplatin and paclitaxel. Furthermore, G1 cell cycle delays are sufficient to increase chemotherapeutic resistance in euploid cells. Mechanistically, G1 delays increase drug resistance to cisplatin and paclitaxel by reducing their ability to damage DNA and microtubules, respectively. Finally, we show that our findings are clinically relevant. Aneuploidy correlates with slowed proliferation and drug resistance in the Cancer Cell Line Encyclopedia (CCLE) dataset. We conclude that a general and seemingly detrimental effect of aneuploidy, slowed proliferation, provides a selective benefit to cancer cells during chemotherapy treatment.


Asunto(s)
Aneuploidia , Antineoplásicos/farmacología , División Celular/efectos de los fármacos , División Celular/genética , Resistencia a Antineoplásicos/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Genes p53 , Humanos , Paclitaxel/farmacología , Trisomía/genética
9.
Sci Rep ; 10(1): 12198, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699207

RESUMEN

Aneuploidy is a feature of many cancers. Recent studies demonstrate that in the hematopoietic stem and progenitor cell (HSPC) compartment aneuploid cells have reduced fitness and are efficiently purged from the bone marrow. However, early phases of hematopoietic reconstitution following bone marrow transplantation provide a window of opportunity whereby aneuploid cells rise in frequency, only to decline to basal levels thereafter. Here we demonstrate by Monte Carlo modeling that two mechanisms could underlie this aneuploidy peak: rapid expansion of the engrafted HSPC population and bone marrow microenvironment degradation caused by pre-transplantation radiation treatment. Both mechanisms reduce the strength of purifying selection acting in early post-transplantation bone marrow. We explore the contribution of other factors such as alterations in cell division rates that affect the strength of purifying selection, the balance of drift and selection imposed by the HSPC population size, and the mutation-selection balance dependent on the rate of aneuploidy generation per cell division. We propose a somatic evolutionary model for the dynamics of cells with aneuploidy or other fitness-reducing mutations during hematopoietic reconstitution following bone marrow transplantation. Similar alterations in the strength of purifying selection during cancer development could help explain the paradox of aneuploidy abundance in tumors despite somatic fitness costs.


Asunto(s)
Evolución Clonal , Células Madre Hematopoyéticas/citología , Modelos Biológicos , Aneuploidia , Animales , Células de la Médula Ósea/citología , Trasplante de Médula Ósea , División Celular , Microambiente Celular , Femenino , Rayos gamma , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Ratones , Irradiación Corporal Total
10.
Cancer Cell ; 38(2): 229-246.e13, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32707077

RESUMEN

Tumor evolution from a single cell into a malignant, heterogeneous tissue remains poorly understood. Here, we profile single-cell transcriptomes of genetically engineered mouse lung tumors at seven stages, from pre-neoplastic hyperplasia to adenocarcinoma. The diversity of transcriptional states increases over time and is reproducible across tumors and mice. Cancer cells progressively adopt alternate lineage identities, computationally predicted to be mediated through a common transitional, high-plasticity cell state (HPCS). Accordingly, HPCS cells prospectively isolated from mouse tumors and human patient-derived xenografts display high capacity for differentiation and proliferation. The HPCS program is associated with poor survival across human cancers and demonstrates chemoresistance in mice. Our study reveals a central principle underpinning intra-tumoral heterogeneity and motivates therapeutic targeting of the HPCS.


Asunto(s)
Plasticidad de la Célula/genética , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Células Madre Neoplásicas/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/citología , Heterogeneidad Genética , Humanos , Neoplasias Pulmonares/patología , Ratones , Análisis de la Célula Individual/métodos , Transcriptoma/genética
11.
Sci Adv ; 6(5): eaay2611, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32064343

RESUMEN

Women harboring heterozygous germline mutations of BRCA2 have a 50 to 80% risk of developing breast cancer, yet the pathogenesis of these cancers is poorly understood. To reveal early steps in BRCA2-associated carcinogenesis, we analyzed sorted cell populations from freshly-isolated, non-cancerous breast tissues of BRCA2 mutation carriers and matched controls. Single-cell whole-genome sequencing demonstrates that >25% of BRCA2 carrier (BRCA2mut/+ ) luminal progenitor (LP) cells exhibit sub-chromosomal copy number variations, which are rarely observed in non-carriers. Correspondingly, primary BRCA2mut/+ breast epithelia exhibit DNA damage together with attenuated replication checkpoint and apoptotic responses, and an age-associated expansion of the LP compartment. We provide evidence that these phenotypes do not require loss of the wild-type BRCA2 allele. Collectively, our findings suggest that BRCA2 haploinsufficiency and associated DNA damage precede histologic abnormalities in vivo. Using these hallmarks of cancer predisposition will yield unanticipated opportunities for improved risk assessment and prevention strategies in high-risk patients.


Asunto(s)
Proteína BRCA2/genética , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia/genética , Adulto , Aneuploidia , Neoplasias de la Mama/patología , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN/genética , Daño del ADN/genética , Femenino , Mutación de Línea Germinal/genética , Heterocigoto , Humanos , Persona de Mediana Edad , Análisis de la Célula Individual
12.
Nat Rev Genet ; 21(1): 44-62, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31548659

RESUMEN

Cancer is driven by multiple types of genetic alterations, which range in size from point mutations to whole-chromosome gains and losses, known as aneuploidy. Chromosome instability, the process that gives rise to aneuploidy, can promote tumorigenesis by increasing genetic heterogeneity and promoting tumour evolution. However, much less is known about how aneuploidy itself contributes to tumour formation and progression. Unlike some pan-cancer oncogenes and tumour suppressor genes that drive transformation in virtually all cell types and cellular contexts, aneuploidy is not a universal promoter of tumorigenesis. Instead, recent studies suggest that aneuploidy is a context-dependent, cancer-type-specific oncogenic event that may have clinical relevance as a prognostic marker and as a potential therapeutic target.


Asunto(s)
Aneuploidia , Transformación Celular Neoplásica/patología , Inestabilidad Cromosómica , Neoplasias/genética , Neoplasias/patología , Animales , Humanos , Fenotipo
13.
Proc Natl Acad Sci U S A ; 116(23): 11390-11395, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31085648

RESUMEN

Aneuploidy, defined as chromosome gains and losses, is a hallmark of cancer. However, compared with other tumor types, extensive aneuploidy is relatively rare in prostate cancer. Thus, whether numerical chromosome aberrations dictate disease progression in prostate cancer patients is not known. Here, we report the development of a method based on whole-transcriptome profiling that allowed us to identify chromosome-arm gains and losses in 333 primary prostate tumors. In two independent cohorts (n = 404) followed prospectively for metastases and prostate cancer-specific death for a median of 15 years, increasing extent of tumor aneuploidy as predicted from the tumor transcriptome was strongly associated with higher risk of lethal disease. The 23% of patients whose tumors had five or more predicted chromosome-arm alterations had 5.3 times higher odds of lethal cancer (95% confidence interval, 2.2 to 13.1) than those with the same Gleason score and no predicted aneuploidy. Aneuploidy was associated with lethality even among men with high-risk Gleason score 8-to-10 tumors. These results point to a key role of aneuploidy in driving aggressive disease in primary prostate cancer.


Asunto(s)
Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Adulto , Anciano , Aneuploidia , Aberraciones Cromosómicas , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor/métodos , Estadificación de Neoplasias/métodos , Próstata/patología , Transcriptoma/genética
14.
Cell ; 175(1): 200-211.e13, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30146160

RESUMEN

Much of our understanding of chromosome segregation is based on cell culture systems. Here, we examine the importance of the tissue environment for chromosome segregation by comparing chromosome segregation fidelity across several primary cell types in native and nonnative contexts. We discover that epithelial cells have increased chromosome missegregation outside of their native tissues. Using organoid culture systems, we show that tissue architecture, specifically integrin function, is required for accurate chromosome segregation. We find that tissue architecture enhances the correction of merotelic microtubule-kinetochore attachments, and this is especially important for maintaining chromosome stability in the polyploid liver. We propose that disruption of tissue architecture could underlie the widespread chromosome instability across epithelial cancers. Moreover, our findings highlight the extent to which extracellular context can influence intrinsic cellular processes and the limitations of cell culture systems for studying cells that naturally function within a tissue.


Asunto(s)
Inestabilidad Cromosómica/fisiología , Segregación Cromosómica/fisiología , Epitelio/fisiología , Animales , Agregación Celular/fisiología , Técnicas de Cultivo de Célula/métodos , Cromosomas/fisiología , Células Epiteliales/fisiología , Femenino , Cinetocoros/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Mitosis , Organoides/fisiología , Huso Acromático/metabolismo , Huso Acromático/fisiología
15.
Science ; 360(6385)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29650645

RESUMEN

Mitochondrial functions are essential for cell viability and rely on protein import into the organelle. Various disease and stress conditions can lead to mitochondrial import defects. We found that inhibition of mitochondrial import in budding yeast activated a surveillance mechanism, mitoCPR, that improved mitochondrial import and protected mitochondria during import stress. mitoCPR induced expression of Cis1, which associated with the mitochondrial translocase to reduce the accumulation of mitochondrial precursor proteins at the mitochondrial translocase. Clearance of precursor proteins depended on the Cis1-interacting AAA+ adenosine triphosphatase Msp1 and the proteasome, suggesting that Cis1 facilitates degradation of unimported proteins. mitoCPR was required for maintaining mitochondrial functions when protein import was compromised, demonstrating the importance of mitoCPR in protecting the mitochondrial compartment.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Peptidil Transferasas/metabolismo , Transporte de Proteínas , Estrés Fisiológico
16.
Cancer Res ; 77(19): 5272-5286, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28775166

RESUMEN

Aneuploidy, a hallmark of cancer cells, poses an appealing opportunity for cancer treatment and prevention strategies. Using a cell-based screen to identify small molecules that could selectively kill aneuploid cells, we identified the compound N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenylethyl]-decanamide monohydrochloride (DL-PDMP), an antagonist of UDP-glucose ceramide glucosyltransferase. DL-PDMP selectively inhibited proliferation of aneuploid primary mouse embryonic fibroblasts and aneuploid colorectal cancer cells. Its selective cytotoxic effects were based on further accentuating the elevated levels of ceramide, which characterize aneuploid cells, leading to increased apoptosis. We observed that DL-PDMP could also enhance the cytotoxic effects of paclitaxel, a standard-of-care chemotherapeutic agent that causes aneuploidy, in human colon cancer and mouse lymphoma cells. Our results offer pharmacologic evidence that the aneuploid state in cancer cells can be targeted selectively for therapeutic purposes, or for reducing the toxicity of taxane-based drug regimens. Cancer Res; 77(19); 5272-86. ©2017 AACR.


Asunto(s)
Aneuploidia , Neoplasias Colorrectales/patología , Embrión de Mamíferos/citología , Fibroblastos/citología , Homeostasis , Linfoma/patología , Esfingolípidos/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ceramidas/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Sinergismo Farmacológico , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucosiltransferasas/metabolismo , Humanos , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Morfolinas/farmacología , Esfingosina N-Aciltransferasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Dev Cell ; 41(6): 638-651.e5, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28633018

RESUMEN

Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica/genética , Aberraciones Cromosómicas , Puntos de Control del Ciclo Celular/genética , Inestabilidad Cromosómica/inmunología , Segregación Cromosómica/genética , Segregación Cromosómica/inmunología , Dosificación de Gen/genética , Inestabilidad Genómica/genética , Humanos , Cariotipo , Neoplasias/genética , Neoplasias/inmunología
18.
Cell ; 169(2): 229-242.e21, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388408

RESUMEN

Phenotypic variability is a hallmark of diseases involving chromosome gains and losses, such as Down syndrome and cancer. Allelic variances have been thought to be the sole cause of this heterogeneity. Here, we systematically examine the consequences of gaining and losing single or multiple chromosomes to show that the aneuploid state causes non-genetic phenotypic variability. Yeast cell populations harboring the same defined aneuploidy exhibit heterogeneity in cell-cycle progression and response to environmental perturbations. Variability increases with degree of aneuploidy and is partly due to gene copy number imbalances, suggesting that subtle changes in gene expression impact the robustness of biological networks and cause alternate behaviors when they occur across many genes. As inbred trisomic mice also exhibit variable phenotypes, we further propose that non-genetic individuality is a universal characteristic of the aneuploid state that may contribute to variability in presentation and treatment responses of diseases caused by aneuploidy.


Asunto(s)
Aneuploidia , Heterogeneidad Genética , Fenotipo , Animales , Ciclo Celular , División Celular , Daño del ADN , Regulación de la Expresión Génica , Cinética , Ratones , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética
19.
Cancer Cell ; 31(2): 240-255, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28089890

RESUMEN

Aneuploidy is a hallmark of cancer, although its effects on tumorigenesis are unclear. Here, we investigated the relationship between aneuploidy and cancer development using cells engineered to harbor single extra chromosomes. We found that nearly all trisomic cell lines grew poorly in vitro and as xenografts, relative to genetically matched euploid cells. Moreover, the activation of several oncogenic pathways failed to alleviate the fitness defect induced by aneuploidy. However, following prolonged growth, trisomic cells acquired additional chromosomal alterations that were largely absent from their euploid counterparts and that correlated with improved fitness. Thus, while single-chromosome gains can suppress transformation, the genome-destabilizing effects of aneuploidy confer an evolutionary flexibility that may contribute to the aggressive growth of advanced malignancies with complex karyotypes.


Asunto(s)
Aneuploidia , Aberraciones Cromosómicas , Neoplasias/genética , Animales , Proliferación Celular , Transformación Celular Neoplásica , Genes ras , Inestabilidad Genómica , Células HCT116 , Humanos , Neoplasias/prevención & control , Oncogenes
20.
Genes Dev ; 30(20): 2259-2271, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807036

RESUMEN

Aneuploidy-or an unbalanced karyotype in which whole chromosomes are gained or lost-causes reduced fitness at both the cellular and organismal levels but is also a hallmark of human cancers. Aneuploidy causes a variety of cellular stresses, including genomic instability, proteotoxic and oxidative stresses, and impaired protein trafficking. The deubiquitinase Ubp3, which was identified by a genome-wide screen for gene deletions that impair the fitness of aneuploid yeast, is a key regulator of aneuploid cell homeostasis. We show that deletion of UBP3 exacerbates both karyotype-specific phenotypes and global stresses of aneuploid cells, including oxidative and proteotoxic stress. Indeed, Ubp3 is essential for proper proteasome function in euploid cells, and deletion of this deubiquitinase leads to further proteasome-mediated proteotoxicity in aneuploid yeast. Notably, the importance of UBP3 in aneuploid cells is conserved. Depletion of the human homolog of UBP3, USP10, is detrimental to the fitness of human cells upon chromosome missegregation, and this fitness defect is accompanied by autophagy inhibition. We thus used a genome-wide screen in yeast to identify a guardian of aneuploid cell fitness conserved across species. We propose that interfering with Ubp3/USP10 function could be a productive avenue in the development of novel cancer therapeutics.


Asunto(s)
Aneuploidia , Endopeptidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina Tiolesterasa/metabolismo , Animales , Autofagia/genética , Línea Celular , Proliferación Celular/genética , Endopeptidasas/genética , Eliminación de Gen , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Ubiquitina Tiolesterasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA