Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Prostaglandins Other Lipid Mediat ; 172: 106836, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599513

RESUMEN

Dravet syndrome is an intractable epilepsy with a high seizure burden that is resistant to current anti-seizure medications. There is evidence that neuroinflammation plays a role in epilepsy and seizures, however few studies have specifically examined neuroinflammation in Dravet syndrome under conditions of a higher seizure burden. Here we used an established genetic mouse model of Dravet syndrome (Scn1a+/- mice), to examine whether a higher seizure burden impacts the number and morphology of microglia in the hippocampus. Moreover, we examined whether a high seizure burden influences classical inflammatory mediators in this brain region. Scn1a+/- mice with a high seizure burden induced by thermal priming displayed a localised reduction in microglial cell density in the granule cell layer and subgranular zone of the dentate gyrus, regions important to postnatal neurogenesis. However, microglial cell number and morphology remained unchanged in other hippocampal subfields. The high seizure burden in Scn1a+/- mice did not affect hippocampal mRNA expression of classical inflammatory mediators such as interleukin 1ß and tumour necrosis factor α, but increased cyclooxygenase 2 (COX-2) expression. We then quantified hippocampal levels of prostanoids that arise from COX-2 mediated metabolism of fatty acids and found that Scn1a+/- mice with a high seizure burden displayed increased hippocampal concentrations of numerous prostaglandins, notably PGF2α, PGE2, PGD2, and 6-K-PGF1A, compared to Scn1a+/- mice with a low seizure burden. In conclusion, a high seizure burden increased hippocampal concentrations of various prostaglandin mediators in a mouse model of Dravet syndrome. Future studies could interrogate the prostaglandin pathways to further better understand their role in the pathophysiology of Dravet syndrome.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsias Mioclónicas , Hipocampo , Canal de Sodio Activado por Voltaje NAV1.1 , Prostaglandinas , Convulsiones , Animales , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/patología , Ratones , Hipocampo/metabolismo , Hipocampo/patología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Convulsiones/metabolismo , Convulsiones/genética , Convulsiones/patología , Prostaglandinas/metabolismo , Masculino , Microglía/metabolismo , Microglía/patología
2.
Cancers (Basel) ; 14(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35954477

RESUMEN

Mesothelioma is an aggressive cancer with limited treatment options and a poor prognosis. Phytocannabinoids possess anti-tumour and palliative properties in multiple cancers, however their effects in mesothelioma are unknown. We investigated the anti-cancer effects and potential mechanisms of action for several phytocannabinoids in mesothelioma cell lines. A panel of 13 phytocannabinoids inhibited growth of human (MSTO and H2452) and rat (II-45) mesothelioma cells in vitro, and cannabidiol (CBD) and cannabigerol (CBG) were the most potent compounds. Treatment with CBD or CBG resulted in G0/G1 arrest, delayed entry into S phase and induced apoptosis. CBD and CBG also significantly reduced mesothelioma cell migration and invasion. These effects were supported by changes in the expression of genes associated with the cell cycle, proliferation, and cell movement following CBD or CBG treatment. Gene expression levels of CNR1, GPR55, and 5HT1A also increased with CBD or CBG treatment. However, treatment with CBD or CBG in a syngeneic orthotopic rat mesothelioma model was unable to increase survival. Our data show that cannabinoids have anti-cancer effects on mesothelioma cells in vitro and alternatives of drug delivery may be needed to enhance their effects in vivo.

3.
Eur J Pharmacol ; 922: 174836, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306000

RESUMEN

Cannabichromene (CBC) and cannabichromenic acid (CBCA) are cannabis constituents currently under evaluation for their therapeutic potential, but their pharmacological properties have not been thoroughly investigated. The most studied ATP-binding cassette (ABC) transporters, ABC subfamily G member 2 (ABCG2) and ABC subfamily B member 1 (ABCB1) limit absorption of substrate drugs in the gut and brain. Moreover, inhibitors of these proteins can lead to clinically significant drug-drug interactions (DDIs). The current study sought to examine whether CBC and CBCA affect ABCB1 and ABCG2 to advance their basic pharmacological characterisation. The plant cannabinoids CBC and CBCA were screened in vitro in a bidirectional transport assay to determine whether they were substrates and/or inhibitors of ABCB1 and ABCG2. Transwell assays with polarized epithelial Madin-Darby Canine Kidney II (MDCK) cells expressing ABCB1 or ABCG2 were used. Samples were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS). CBCA was found to be an ABCB1 substrate, but not an ABCG2 substrate. CBC was not a substrate of either transporter. Neither CBCA nor CBC inhibited ABCB1 transport of prazosin or ABCG2 transport of digoxin. In silico molecular docking suggested CBCA binds ABCB1 in the access tunnel and the central binding pocket. CBC, an agent with anticonvulsant, anti-inflammatory and anti-depressant properties, is not a substrate or inhibitor of ABCB1 or ABCG2, which is favourable to its therapeutic development. CBCA is an ABCB1 substrate in vitro which might contribute to its poor absorption. These findings provide important basic pharmacological data to assist the therapeutic development of these cannabis constituents.


Asunto(s)
Cannabinoides , Cannabis , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Cannabinoides/farmacología , Cannabis/metabolismo , Cromatografía Liquida , Perros , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem
4.
Cannabis Cannabinoid Res ; 7(3): 304-317, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33998860

RESUMEN

Introduction: Legalization of medicinal cannabis around the world has led to an increase in the use of commercial cannabis-based products in the community. These cannabis-based products are being used in combination with conventional drugs to treat a variety of health conditions. Moreover, recreational cannabis-based products may be used in combination with other drugs. In this setting, there is increased potential for drug-drug interactions (DDIs) involving commercial cannabis-based products. Since DDIs can lead to serious adverse events, drug regulatory bodies require that every investigational drug be evaluated for DDI potential at metabolic enzymes and transporters. However, this seldom occurs for cannabis-based products due to legislation in many jurisdictions allowing a direct pathway to market. This study aimed to examine the inhibitory potential of three commercially available cannabis-based products at human ATP-binding cassette (ABC) and solute-carrier (SLC) transporters. Materials and Methods: Three commercial cannabis-based products (Spectrum Yellow™, Tweed Argyle, and Spectrum Red™) that contain differing concentrations of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) were evaluated for DDI potential at 12 drug transporters. HEK293 cells or vesicles expressing human ABC transporters (ABCB1, ABCC2, ABCG2, or ABCB11) and SLC transporters (SLC22A1, SLC22A2, SLC22A6, SLC22A8, SLCO1B1, SLCO1B3, SLC47A1, and SLC47A2) were used to measure transporter function. Results: Spectrum Yellow and Tweed Argyle inhibited ABCG2 transporter function. The IC50 value of Spectrum Yellow based on CBD and Δ9-THC content was 4.5 µM for CBD and 0.20 µM for Δ9-THC, and the IC50 value of Tweed Argyle was 9.3 µM for CBD and 6.0 µM for Δ9-THC. Tweed Argyle also inhibited ABCB11 transporter function with an IC50 value of 11.9 µM for CBD and 7.7 µM for Δ9-THC. SLC22A6, SLC22A1, SLC22A2, SLCO1B1, and SLCO1B3 transporter functions were modestly inhibited by high concentrations of the cannabis-based products. The three cannabis-based products did not inhibit ABCB1, ABCC2, SLC47A1, SLC47A2, or SLC22A8 transporters. Discussion: Novel findings were that the cannabis-based products inhibited ABCB11, SLC22A6, SLC22A1, SLC22A2, SLCO1B1, and SLCO1B3 (although modestly in most instances). Spectrum Yellow and Tweed Argyle potently inhibited ABCG2, and future in vivo DDI studies could be conducted to assess whether cannabis products affect the pharmacokinetics of medications that are ABCG2 substrates.


Asunto(s)
Cannabis , Alucinógenos , Adenosina Trifosfato , Agonistas de Receptores de Cannabinoides , Cannabis/química , Dronabinol/farmacocinética , Células HEK293 , Alucinógenos/farmacología , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado , Proteínas de Transporte de Membrana/metabolismo
5.
Sci Rep ; 11(1): 14948, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294753

RESUMEN

Cannabis is a complex mixture of hundreds of bioactive molecules. This provides the potential for pharmacological interactions between cannabis constituents, a phenomenon referred to as "the entourage effect" by the medicinal cannabis community. We hypothesize that pharmacokinetic interactions between cannabis constituents could substantially alter systemic cannabinoid concentrations. To address this hypothesis we compared pharmacokinetic parameters of cannabinoids administered orally in a cannabis extract to those administered as individual cannabinoids at equivalent doses in mice. Astonishingly, plasma cannabidiolic acid (CBDA) concentrations were 14-times higher following administration in the cannabis extract than when administered as a single molecule. In vitro transwell assays identified CBDA as a substrate of the drug efflux transporter breast cancer resistance protein (BCRP), and that cannabigerol and Δ9-tetrahydrocannabinol inhibited the BCRP-mediated transport of CBDA. Such a cannabinoid-cannabinoid interaction at BCRP transporters located in the intestine would inhibit efflux of CBDA, thus resulting in increased plasma concentrations. Our results suggest that cannabis extracts provide a natural vehicle to substantially enhance plasma CBDA concentrations. Moreover, CBDA might have a more significant contribution to the pharmacological effects of orally administered cannabis extracts than previously thought.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Cannabinoides/administración & dosificación , Cannabis/química , Aceites de Plantas/administración & dosificación , Administración Oral , Animales , Disponibilidad Biológica , Cannabinoides/sangre , Cannabinoides/química , Cannabinoides/farmacocinética , Suplementos Dietéticos , Perros , Células de Riñón Canino Madin Darby , Ratones , Modelos Animales , Aceites de Plantas/química , Aceites de Plantas/farmacocinética
6.
AAPS J ; 23(4): 91, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34181150

RESUMEN

Medicinal cannabis use has increased exponentially with widespread legalization around the world. Cannabis-based products are being used for numerous health conditions, often in conjunction with prescribed medications. The risk of clinically significant drug-drug interactions (DDIs) increases in this setting of polypharmacy, prompting concern among health care providers. Serious adverse events can result from DDIs, specifically those affecting CYP-mediated drug metabolism. Both cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), major constituents of cannabis, potently inhibit CYPs. Cannabis-based products contain an array of cannabinoids, many of which have limited data available regarding potential DDIs. This study assessed the inhibitory potential of 12 cannabinoids against CYP-mediated drug metabolism to predict the likelihood of clinically significant DDIs between cannabis-based therapies and conventional medications. Supersomes™ were used to screen the inhibitory potential of cannabinoids in vitro. Twelve cannabinoids were evaluated at the predominant drug-metabolizing isoforms: CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2B6, and CYP2C19. The cannabinoids exhibited varied effects and potencies across the CYP isoforms. CYP2C9-mediated metabolism was inhibited by nearly all the cannabinoids with estimated Ki values of 0.2-3.2 µM. Most of the cannabinoids inhibited CYP2C19, whereas CYP2D6, CYP3A4, and CYP2B6 were either not affected or only partially inhibited by the cannabinoids. Effects of the cannabinoids on CYP2D6, CYP1A2, CYP2B6, and CYP3A4 metabolism were limited so in vivo DDIs mediated by these isoforms would not be predicted. CYP2C9-mediated metabolism was inhibited by cannabinoids at clinically relevant concentrations. In vivo DDI studies may be justified for CYP2C9 substrates with a narrow therapeutic index.


Asunto(s)
Cannabinoides/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Marihuana Medicinal/química , Cannabinoides/uso terapéutico , Inhibidores Enzimáticos del Citocromo P-450/uso terapéutico , Interacciones Farmacológicas , Pruebas de Enzimas , Humanos , Polifarmacia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA