Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 94: 220-233, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423704

RESUMEN

For best photosensitizer activity phthalocyanine dyes used in photodynamic therapy should be molecularly dispersed. Polyethylene glycol-block-polylactide derivatives presenting benzyl side-groups were synthesized to encapsulate a highly lipophilic phthalocyanine dye (AlClPc) and evaluate the effect of π-π interactions on the nanocarrier colloidal stability and dye dispersion. Copolymers with 0, 1, 2 and 6 mol% of benzyl glycidyl ether (BGE) were obtained via polyethylene glycol initiated ring-opening copolymerization of D,l-lactide with BGE. The block copolymers formed stable, monodisperse nanospheres with low in vitro cytotoxicity. AlClPc loading increased the nanosphere size and affected their colloidal stability. The photo-physical properties of the encapsulated dye, studied in batch and after separation by field flow fractionation, demonstrated the superiority of plain PEG-PLA over BGE-containing copolymers in maintaining the dye in its monomeric (non-aggregated) form in aqueous suspension. High dye encapsulation and sustained dye release suggest that these nanocarriers are good candidates for photodynamic therapy.


Asunto(s)
Portadores de Fármacos/química , Indoles/farmacología , Nanosferas/química , Fármacos Fotosensibilizantes/farmacología , Poliésteres/química , Polietilenglicoles/química , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Indoles/química , Isoindoles , Cinética , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Peso Molecular , Octanoles/química , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Poliésteres/síntesis química , Polietilenglicoles/síntesis química , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Electricidad Estática , Células Vero
2.
Biomed Pharmacother ; 103: 1348-1354, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29864917

RESUMEN

Combination-based chemotherapies have been the standard treatment for multiple solid tumors since the 1960s. Combined therapies where both agents have toxicity results in dose-limiting effects. α- tocopherol succinate (TS) is an analogue of vitamin E that exhibits antitumor properties in the absence of toxicity. Hence, its combination with a frontline chemotherapy, doxorubicin (DOX) is an alternative to increase antitumor efficacy. Therefore, the aim of this work was to evaluate the antitumor activity of nanostructed lipid carriers (NLC) loaded with TS and DOX. The NLC-TS-DOX were prepared, characterized and radiolabeled with technetium-99m. Cytotoxicity studies were performed in vitro, using two breast cancer cell lines, MDA-MB-231 and 4T1. Biodistribution and antitumor activity were evaluated in 4T1 tumor-bearing mice. The results showed that NLC-TS-DOX had a small diameter (85 nm) and a long blood clearance (T1/2ß = 1107.71 min) that consequently resulted in a higher tumor uptake compared to contralateral muscle for up to 48 h. Drug combination studies in MDA-MB-231 and 4T1 cells showed a combination index below 0.8 at ED50-90 for both cell lines. Interestingly, a high synergism was found at ED90. Antitumor activity showed a better control of tumor growth for animals treated with NLC-ST-DOX. The small particle size, along with the EPR effect and the controlled release of DOX from the particle, associated with the synergic combination between TS and DOX led to an increase of the antitumor efficacy. Therefore, NLC-TS-DOX can be considered a plausible alternative to improve antitumor efficacy in DOX therapeutic regimens.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Lípidos/química , Nanopartículas/química , alfa-Tocoferol/análogos & derivados , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Doxorrubicina/farmacología , Liberación de Fármacos , Femenino , Humanos , Ratones Endogámicos BALB C , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Electricidad Estática , Distribución Tisular , alfa-Tocoferol/farmacología , alfa-Tocoferol/uso terapéutico
3.
Colloids Surf B Biointerfaces ; 136: 553-61, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26454545

RESUMEN

Paclitaxel (PTX) is widely used as a first-line treatment for patients with metastatic breast cancer; however, its poor water solubility represents a major challenge for parenteral administration. The encapsulation of the PTX in drug-delivery systems with high affinity for tumor sites could improve the uptake and increase its therapeutic efficacy. In this work, long-circulating and pH-sensitive PEG-coated (SpHL-PTX) and PEG-folate-coated liposomes containing PTX (SpHL-FT-PTX) were prepared, and the physicochemical properties and in vitro cytotoxic activity were evaluated. Both formulations presented adequate physicochemical properties, including a mean diameter smaller than 200 nm, zeta potential values near the neutral range, and an encapsulation percentage higher than 93%. Moreover, SpHL-FT-PTX showed a good stability after storage for 100 days at 4 °C. The viability studies on breast cancer cell lines (MDA-MB-231 and MCF-7) demonstrated cytotoxic activity more pronounced for SpHL-FT-PTX than for SpHL-PTX or free drug for both tumor cell lines. This activity was reduced to a rate comparable to SpHL-PTX when the cells were previously treated with folic acid in order to saturate the receptors. In contrast, in the normal cell line (L929), cell viability was decreased only by free or liposomal PTX in the highest concentrations. A significantly higher selectivity index was obtained after SpHL-FT-PTX treatment compared to SpHL-PTX and free PTX. Therefore, the results of the present work suggest that SpHL-FT-PTX can be a promising formulation for the treatment of metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Lípidos/administración & dosificación , Liposomas , Paclitaxel/uso terapéutico , Humanos
4.
J Virol Methods ; 174(1-2): 47-52, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21507333

RESUMEN

This study investigated the anti-viral effects of the polyphenolic compounds Quercetin and Kaempherol on the release of HTLV-1 from the surface of MT-2 cells. Atomic force microscopy (AFM) was used to scan the surface of the MT-2 cells. MT-2 cells were fixed with 100% methanol on round glass lamina or cleaved mica and dried under UV light and laminar flow. The images were captured on a Multimode equipment monitored by a NanoScope IIId controller from Veeco Instruments Inc operated in tapping mode and equipped with phase-imaging hardware. The images demonstrated viral budding structures 131 ± 57 nm in size, indicating profuse viral budding. Interestingly, cell-free viruses and budding structures visualized on the surface of cells were less common when MT-2 was incubated with Quercetin, and no particles were seen on the surface of cells incubated with Kaempherol. In summary, these data indicate that HTLV-1 is budding constantly from the MT-2 cell surface and that polyphenolic compounds were able to reduce this viral release. Biological samples were analyzed with crude cell preparations just after cultivation in the presence of Quercetin and Kaempherol, showing that the AFM technique is a rapid and powerful tool for analysis of antiviral activity of new biological compounds.


Asunto(s)
Antivirales/farmacología , Virus Linfotrópico T Tipo 1 Humano/efectos de los fármacos , Quempferoles/farmacología , Quercetina/farmacología , Linfocitos T/ultraestructura , Linfocitos T/virología , Liberación del Virus/efectos de los fármacos , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA