Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 293(34): 13033-13043, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29925588

RESUMEN

The catalytic performance of the major CO2-assimilating enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), restricts photosynthetic productivity. Natural diversity in the catalytic properties of Rubisco indicates possibilities for improvement. Oceanic phytoplankton contain some of the most efficient Rubisco enzymes, and diatoms in particular are responsible for a significant proportion of total marine primary production as well as being a major source of CO2 sequestration in polar cold waters. Until now, the biochemical properties and three-dimensional structures of Rubisco from diatoms were unknown. Here, diatoms from arctic waters were collected, cultivated, and analyzed for their CO2-fixing capability. We characterized the kinetic properties of five and determined the crystal structures of four Rubiscos selected for their high CO2-fixing efficiency. The DNA sequences of the rbcL and rbcS genes of the selected diatoms were similar, reflecting their close phylogenetic relationship. The Vmax and Km for the oxygenase and carboxylase activities at 25 °C and the specificity factors (Sc/o) at 15, 25, and 35 °C were determined. The Sc/o values were high, approaching those of mono- and dicot plants, thus exhibiting good selectivity for CO2 relative to O2 Structurally, diatom Rubiscos belong to form I C/D, containing small subunits characterized by a short ßA-ßB loop and a C-terminal extension that forms a ß-hairpin structure (ßE-ßF loop). Of note, the diatom Rubiscos featured a number of posttranslational modifications of the large subunit, including 4-hydroxyproline, ß-hydroxyleucine, hydroxylated and nitrosylated cysteine, mono- and dihydroxylated lysine, and trimethylated lysine. Our studies suggest adaptation toward achieving efficient CO2 fixation in arctic diatom Rubiscos.


Asunto(s)
Dióxido de Carbono/metabolismo , Diatomeas/enzimología , Procesamiento Proteico-Postraduccional , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Cristalografía por Rayos X , Hidroxilación , Cinética , Nitrosación , Filogenia , Conformación Proteica , Pliegue de Proteína , Ribulosa-Bifosfato Carboxilasa/genética , Relación Estructura-Actividad
2.
Plant J ; 85(1): 148-60, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26662726

RESUMEN

Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Chaperonas Moleculares/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Synechococcus/enzimología , Proteínas Bacterianas/genética , Ciclo del Carbono , Cloroplastos/metabolismo , Cinética , Chaperonas Moleculares/genética , Nitrógeno/metabolismo , Fotosíntesis , Plantas Modificadas Genéticamente , Ribulosa-Bifosfato Carboxilasa/genética , Synechococcus/genética , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Transgenes
3.
Nature ; 513(7519): 547-50, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25231869

RESUMEN

In photosynthetic organisms, D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major enzyme assimilating atmospheric CO2 into the biosphere. Owing to the wasteful oxygenase activity and slow turnover of Rubisco, the enzyme is among the most important targets for improving the photosynthetic efficiency of vascular plants. It has been anticipated that introducing the CO2-concentrating mechanism (CCM) from cyanobacteria into plants could enhance crop yield. However, the complex nature of Rubisco's assembly has made manipulation of the enzyme extremely challenging, and attempts to replace it in plants with the enzymes from cyanobacteria and red algae have not been successful. Here we report two transplastomic tobacco lines with functional Rubisco from the cyanobacterium Synechococcus elongatus PCC7942 (Se7942). We knocked out the native tobacco gene encoding the large subunit of Rubisco by inserting the large and small subunit genes of the Se7942 enzyme, in combination with either the corresponding Se7942 assembly chaperone, RbcX, or an internal carboxysomal protein, CcmM35, which incorporates three small subunit-like domains. Se7942 Rubisco and CcmM35 formed macromolecular complexes within the chloroplast stroma, mirroring an early step in the biogenesis of cyanobacterial ß-carboxysomes. Both transformed lines were photosynthetically competent, supporting autotrophic growth, and their respective forms of Rubisco had higher rates of CO2 fixation per unit of enzyme than the tobacco control. These transplastomic tobacco lines represent an important step towards improved photosynthesis in plants and will be valuable hosts for future addition of the remaining components of the cyanobacterial CCM, such as inorganic carbon transporters and the ß-carboxysome shell proteins.


Asunto(s)
Productos Agrícolas/enzimología , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/metabolismo , Biocatálisis/efectos de los fármacos , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Cloroplastos/enzimología , Cloroplastos/genética , Cloroplastos/metabolismo , Productos Agrícolas/citología , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Genes Bacterianos/genética , Cinética , Datos de Secuencia Molecular , Fenotipo , Fotosíntesis/efectos de los fármacos , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Synechococcus/enzimología , Synechococcus/genética , Nicotiana/citología , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/crecimiento & desarrollo
4.
Plant J ; 79(1): 1-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24810513

RESUMEN

The photosynthetic efficiency of C3 plants suffers from the reaction of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) with O2 instead of CO2 , leading to the costly process of photorespiration. Increasing the concentration of CO2 around Rubisco is a strategy used by photosynthetic prokaryotes such as cyanobacteria for more efficient incorporation of inorganic carbon. Engineering the cyanobacterial CO2 -concentrating mechanism, the carboxysome, into chloroplasts is an approach to enhance photosynthesis or to compartmentalize other biochemical reactions to confer new capabilities on transgenic plants. We have chosen to explore the possibility of producing ß-carboxysomes from Synechococcus elongatus PCC7942, a model freshwater cyanobacterium. Using the agroinfiltration technique, we have transiently expressed multiple ß-carboxysomal proteins (CcmK2, CcmM, CcmL, CcmO and CcmN) in Nicotiana benthamiana with fusions that target these proteins into chloroplasts, and that provide fluorescent labels for visualizing the resultant structures. By confocal and electron microscopic analysis, we have observed that the shell proteins of the ß-carboxysome are able to assemble in plant chloroplasts into highly organized assemblies resembling empty microcompartments. We demonstrate that a foreign protein can be targeted with a 17-amino-acid CcmN peptide to the shell proteins inside chloroplasts. Our experiments establish the feasibility of introducing carboxysomes into chloroplasts for the potential compartmentalization of Rubisco or other proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Cloroplastos/metabolismo , Nicotiana/ultraestructura , Orgánulos/ultraestructura , Synechococcus/genética , Arabidopsis/genética , Proteínas Bacterianas/genética , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Estudios de Factibilidad , Expresión Génica , Genes Reporteros , Inmunohistoquímica , Células del Mesófilo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Orgánulos/metabolismo , Hojas de la Planta , Plantas Modificadas Genéticamente , Señales de Clasificación de Proteína/genética , Transporte de Proteínas , Synechococcus/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
5.
Plant Physiol ; 149(4): 1860-71, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19193861

RESUMEN

Trehalose-6-phosphate (T6P) is a proposed signaling molecule in plants, yet how it signals was not clear. Here, we provide evidence that T6P functions as an inhibitor of SNF1-related protein kinase1 (SnRK1; AKIN10/AKIN11) of the SNF1-related group of protein kinases. T6P, but not other sugars and sugar phosphates, inhibited SnRK1 in Arabidopsis (Arabidopsis thaliana) seedling extracts strongly (50%) at low concentrations (1-20 microM). Inhibition was noncompetitive with respect to ATP. In immunoprecipitation studies using antibodies to AKIN10 and AKIN11, SnRK1 catalytic activity and T6P inhibition were physically separable, with T6P inhibition of SnRK1 dependent on an intermediary factor. In subsequent analysis, T6P inhibited SnRK1 in extracts of all tissues analyzed except those of mature leaves, which did not contain the intermediary factor. To assess the impact of T6P inhibition of SnRK1 in vivo, gene expression was determined in seedlings expressing Escherichia coli otsA encoding T6P synthase to elevate T6P or otsB encoding T6P phosphatase to decrease T6P. SnRK1 target genes showed opposite regulation, consistent with the regulation of SnRK1 by T6P in vivo. Analysis of microarray data showed up-regulation by T6P of genes involved in biosynthetic reactions, such as genes for amino acid, protein, and nucleotide synthesis, the tricarboxylic acid cycle, and mitochondrial electron transport, which are normally down-regulated by SnRK1. In contrast, genes involved in photosynthesis and degradation processes, which are normally up-regulated by SnRK1, were down-regulated by T6P. These experiments provide strong evidence that T6P inhibits SnRK1 to activate biosynthetic processes in growing tissues.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Redes y Vías Metabólicas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Fosfatos de Azúcar/farmacología , Trehalosa/análogos & derivados , Adenosina Trifosfato/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosiltransferasas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Extractos Vegetales/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Programas Informáticos , Factores de Transcripción/metabolismo , Trehalosa/farmacología
6.
Ann Bot ; 89 Spec No: 833-9, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12102509

RESUMEN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity is modulated in vivo either by reaction with CO2 and Mg2+ to carbamylate a lysine residue in the catalytic site, or by the binding of inhibitors within the catalytic site. Binding of inhibitors blocks either activity or the carbamylation of the lysine residue that is essential for activity. At night, in many species, 2-carboxyarabinitol-1-phosphate (CA1P) is formed which binds tightly to Rubisco, inhibiting catalytic activity. Recent work has shown that tight-binding inhibitors can also decrease Rubisco activity in the light and contribute to the regulation of Rubisco activity. Here we determine the influence that such inhibitors of Rubisco exert on catalytic activity during drought stress. In tobacco plants, 'total Rubisco activity', i.e. the activity following pre-incubation with CO2 and Mg2+, was positively correlated with leaf relative water content. However, 'total Rubisco activity' in extracts from leaves with low water potential increased markedly when tightly bound inhibitors were removed, thus increasing the number of catalytic sites available. This suggests that in tobacco the decrease of Rubisco activity under drought stress is not primarily the result of changes in activation by CO2 and Mg2+ but due rather to the presence of tight-binding inhibitors. The amounts of inhibitor present in leaves of droughted tobacco based on the decrease in Rubisco activity per mg soluble protein were usually much greater than the amounts of the known inhibitors (CA1P and 'daytime inhibitor') that can be recovered in acid extracts. Alternative explanations for the difference between maximal and total activities are discussed.


Asunto(s)
Ribulosa-Bifosfato Carboxilasa/metabolismo , Agua/fisiología , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Clorofila/fisiología , Desastres , Magnesio/farmacología , Presión Osmótica , Pentosafosfatos/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/antagonistas & inhibidores , Ribulosa-Bifosfato Carboxilasa/efectos de los fármacos , Estrés Mecánico , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Triticum/efectos de los fármacos , Triticum/metabolismo , Agua/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA