Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Immunol ; 13: 907461, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720383

RESUMEN

Circadian rhythms affect the progression and severity of bacterial infections including those caused by Streptococcus pneumoniae, but the mechanisms responsible for this phenomenon remain largely elusive. Following advances in our understanding of the role of replication of S. pneumoniae within splenic macrophages, we sought to investigate whether events within the spleen correlate with differential outcomes of invasive pneumococcal infection. Utilising murine invasive pneumococcal disease (IPD) models, here we report that infection during the murine active phase (zeitgeber time 15; 15h after start of light cycle, 3h after start of dark cycle) resulted in significantly faster onset of septicaemia compared to rest phase (zeitgeber time 3; 3h after start of light cycle) infection. This correlated with significantly higher pneumococcal burden within the spleen of active phase-infected mice at early time points compared to rest phase-infected mice. Whole-section confocal microscopy analysis of these spleens revealed that the number of pneumococci is significantly higher exclusively within marginal zone metallophilic macrophages (MMMs) known to allow intracellular pneumococcal replication as a prerequisite step to the onset of septicaemia. Pneumococcal clusters within MMMs were more abundant and increased in size over time in active phase-infected mice compared to those in rest phase-infected mice which decreased in size and were present in a lower percentage of MMMs. This phenomenon preceded significantly higher levels of bacteraemia alongside serum IL-6 and TNF-α concentrations in active phase-infected mice following re-seeding of pneumococci into the blood. These data greatly advance our fundamental knowledge of pneumococcal infection by linking susceptibility to invasive pneumococcal infection to variation in the propensity of MMMs to allow persistence and replication of phagocytosed bacteria. These findings also outline a somewhat rare scenario whereby the active phase of an organism's circadian cycle plays a seemingly counterproductive role in the control of invasive infection.


Asunto(s)
Infecciones Neumocócicas , Sepsis , Animales , Macrófagos/microbiología , Ratones , Fagocitosis , Infecciones Neumocócicas/microbiología , Sepsis/microbiología , Streptococcus pneumoniae
2.
Lancet Microbe ; 2(12): e695-e703, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34901898

RESUMEN

BACKGROUND: Hypervirulent Klebsiella pneumoniae (hvKp) strains of capsule type K1 and K2 cause invasive infections associated with hepatic abscesses, which can be difficult to treat and are frequently associated with relapsing infections. Other K pneumoniae strains (non-hvKp), including lineages that have acquired carbapenem resistance, do not manifest this pathology. In this work we aimed to test the hypothesis that within-macrophage replication is a key mechanism underpinning abscess formation in hvKp infections. METHODS: In this exploratory investigation, to study the pathophysiology of abscess formation, mice were intravenously infected with 106 colony forming units (CFU) of either hvKp isolates (six strains) or non-hvKp isolates (seven strains). Intracellular bacterial replication and neutrophil influx in liver and spleen was quantified by fluorescence microscopy of sliced cryopreserved organs of mice collected 30 min, 6 h, and 24 h after infection with the aim to provide data of bacterial association to Kupffer cells in the liver and to the different tissue macrophages in the spleen. Microbiological and microscopy analysis of an ex-vivo model of pig liver and spleen infection were used to confirm within-macrophage replication. Pig organs were perfused with heparinised, autologous pig's blood and injected with 6·5 × 107 CFU of hvKp K2 sequence type 25 strain GMR151. Blood and tissue biopsies collected before infection and 30 min, 1 h, 2 h, 3 h, 4 h, and 5 h after infection were used to measure bacterial counts and to identify the subcellular localisation of bacteria by immunohistochemistry analysis. FINDINGS: We show that hvKp resisted phagocyte-mediated clearance and replicated in mouse liver macrophages to form clusters 6 h after infection, with a mean of 7·0 bacteria per Kupffer cell (SD 6·2); however, non-hvKp were efficiently cleared (mean 1·5 bacteria per cell [SD 1·1]). HvKp infection promoted neutrophil recruitment to sites of infection, which in the liver resulted in histopathological signs of abscess formation as early as 24 h post-infection. Experiments in pig organs which share a high functional and anatomical resemblance to human organs, provided strong evidence for the propensity of hvKp to replicate within the hepatic macrophages. INTERPRETATION: These findings show subversion of innate immune processes in the liver by K pneumoniae and resistance to Kupffer cell mediated clearance as an explanation for the propensity of hvKp strains to cause hepatic abscesses. FUNDING: University of Oxford and a Royal Society Wolfson grant funded biosafety facility.


Asunto(s)
Infecciones por Klebsiella , Absceso Hepático , Animales , Infecciones por Klebsiella/diagnóstico , Klebsiella pneumoniae , Absceso Hepático/microbiología , Macrófagos , Ratones , Perfusión , Porcinos , Virulencia
3.
EBioMedicine ; 72: 103601, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34619637

RESUMEN

BACKGROUND: Severe community-acquired pneumococcal pneumonia is commonly associated with bacteraemia. Although it is assumed that the bacteraemia solely derives from pneumococci entering the blood from the lungs it is unknown if other organs are important in the pathogenesis of bacteraemia. Using three models, we tested the relevance of the spleen in pneumonia-associated bacteraemia. METHODS: We used human spleens perfused ex vivo to explore permissiveness to bacterial replication, a non-human primate model to check for splenic involvement during pneumonia and a mouse pneumonia-bacteraemia model to demonstrate that splenic involvement correlates with invasive disease. FINDINGS: Here we present evidence that the spleen is the reservoir of bacteraemia during pneumonia. We found that in the human spleen infected with pneumococci, clusters with increasing number of bacteria were detectable within macrophages. These clusters also were detected in non-human primates. When intranasally infected mice were treated with a non-therapeutic dose of azithromycin, which had no effect on pneumonia but concentrated inside splenic macrophages, bacteria were absent from the spleen and blood and importantly mice had no signs of disease. INTERPRETATION: We conclude that the bacterial load in the spleen, and not lung, correlates with the occurrence of bacteraemia. This supports the hypothesis that the spleen, and not the lungs, is the major source of bacteria during systemic infection associated with pneumococcal pneumonia; a finding that provides a mechanistic basis for using combination therapies including macrolides in the treatment of severe community-acquired pneumococcal pneumonia. FUNDING: Oxford University, Wolfson Foundation, MRC, NIH, NIHR, and MRC and BBSRC studentships supported the work.


Asunto(s)
Bacteriemia/microbiología , Macrófagos/microbiología , Neumonía Neumocócica/microbiología , Bazo/microbiología , Animales , Carga Bacteriana/fisiología , Infecciones Comunitarias Adquiridas/microbiología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Papio/microbiología , Streptococcus pneumoniae/patogenicidad
4.
Nat Microbiol ; 3(5): 600-610, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29662129

RESUMEN

Bacterial septicaemia is a major cause of mortality, but its pathogenesis remains poorly understood. In experimental pneumococcal murine intravenous infection, an initial reduction of bacteria in the blood is followed hours later by a fatal septicaemia. These events represent a population bottleneck driven by efficient clearance of pneumococci by splenic macrophages and neutrophils, but as we show in this study, accompanied by occasional intracellular replication of bacteria that are taken up by a subset of CD169+ splenic macrophages. In this model, proliferation of these sequestered bacteria provides a reservoir for dissemination of pneumococci into the bloodstream, as demonstrated by its prevention using an anti-CD169 monoclonal antibody treatment. Intracellular replication of pneumococci within CD169+ splenic macrophages was also observed in an ex vivo porcine spleen, where the microanatomy is comparable with humans. We also showed that macrolides, which effectively penetrate macrophages, prevented septicaemia, whereas beta-lactams, with inefficient intracellular penetration, failed to prevent dissemination to the blood. Our findings define a shift in our understanding of the pneumococcus from an exclusively extracellular pathogen to one with an intracellular phase. These findings open the door to the development of treatments that target this early, previously unrecognized intracellular phase of bacterial sepsis.


Asunto(s)
ADN Bacteriano/genética , Macrófagos/microbiología , Infecciones Neumocócicas/complicaciones , Sepsis/microbiología , Bazo/citología , Streptococcus pneumoniae/fisiología , Animales , Replicación del ADN , Modelos Animales de Enfermedad , Humanos , Macrólidos/farmacología , Macrólidos/uso terapéutico , Ratones , Infecciones Neumocócicas/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Sepsis/etiología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Bazo/microbiología , Streptococcus pneumoniae/patogenicidad , Porcinos
5.
Environ Microbiol ; 20(4): 1576-1589, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29521441

RESUMEN

Excess copper is highly toxic and forms part of the host innate immune system's antibacterial arsenal, accumulating at sites of infection and acting within macrophages to kill engulfed pathogens. We show for the first time that a novel, horizontally gene transferred copper resistance locus (copXL), uniquely associated with the SCCmec elements of the highly virulent, epidemic, community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) USA300, confers copper hyper-resistance. These genes are additional to existing core genome copper resistance mechanisms, and are not found in typical S. aureus lineages, but are increasingly identified in emerging pathogenic isolates. Our data show that CopX, a putative P1B-3 -ATPase efflux transporter, and CopL, a novel lipoprotein, confer copper hyper-resistance compared to typical S. aureus strains. The copXL genes form an operon that is tightly repressed in low copper environments by the copper regulator CsoR. Significantly, CopX and CopL are important for S. aureus USA300 intracellular survival within macrophages. Therefore, the emergence of new S. aureus clones with the copXL locus has significant implications for public health because these genes confer increased resistance to antibacterial copper toxicity, enhancing bacterial fitness by altering S. aureus interaction with innate immunity.


Asunto(s)
Antibacterianos/toxicidad , Cobre/toxicidad , Farmacorresistencia Bacteriana/genética , Macrófagos/microbiología , Proteínas de Transporte de Membrana/genética , Staphylococcus aureus Resistente a Meticilina , Transferencia de Gen Horizontal/genética , Humanos , Inmunidad Innata/inmunología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Operón , Infecciones Estafilocócicas/microbiología
6.
Angew Chem Int Ed Engl ; 56(52): 16555-16558, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29140595

RESUMEN

We describe the development, characterization, and biological testing of a new type of linear molecularly imprinted polymer (LMIP) designed to act as an anti-infective by blocking the quorum sensing (QS) mechanism and so abrogating the virulence of the pathogen Streptococcus pneumoniae. The LMIP is prepared (polymerized) in presence of a template molecule, but unlike in traditional molecular imprinting approaches, no cross-linker is used. This results in soluble low-molecular-weight oligomers that can act as a therapeutic agent in vitro and in vivo. The LMIP was characterized by mass spectrometry to determine its monomer composition. Fragments identified were then aligned along the peptide template by computer modeling to predict the possible monomer sequence of the LMIP. These findings provide a proof of principle that LMIPs can be used to block QS, thus setting the stage for the development of LMIPs a novel drug-discovery platform and class of materials to target Gram-positive pathogens.


Asunto(s)
Antiinfecciosos/farmacología , Polímeros/química , Percepción de Quorum/efectos de los fármacos , Streptococcus pneumoniae/fisiología , Transportadoras de Casetes de Unión a ATP/química , Antiinfecciosos/química , Proteínas Bacterianas/química , Espectrometría de Masas , Impresión Molecular , Péptidos/química , Péptidos/metabolismo , Virulencia/efectos de los fármacos
8.
Environ Microbiol ; 19(5): 1868-1880, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28195384

RESUMEN

Air pollution is the world's largest single environmental health risk (WHO). Particulate matter such as black carbon is one of the main components of air pollution. The effects of particulate matter on human health are well established however the effects on bacteria, organisms central to ecosystems in humans and in the natural environment, are poorly understood. We report here for the first time that black carbon drastically changes the development of bacterial biofilms, key aspects of bacterial colonisation and survival. Our data show that exposure to black carbon induces structural, compositional and functional changes in the biofilms of both S. pneumoniae and S. aureus. Importantly, the tolerance of the biofilms to multiple antibiotics and proteolytic degradation is significantly affected. Additionally, our results show that black carbon impacts bacterial colonisation in vivo. In a mouse nasopharyngeal colonisation model, black carbon caused S. pneumoniae to spread from the nasopharynx to the lungs, which is essential for subsequent infection. Therefore our study highlights that air pollution has a significant effect on bacteria that has been largely overlooked. Consequently these findings have important implications concerning the impact of air pollution on human health and bacterial ecosystems worldwide.


Asunto(s)
Contaminación del Aire/efectos adversos , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Hollín/farmacología , Streptococcus pneumoniae/crecimiento & desarrollo , Animales , Biopelículas/efectos de los fármacos , Humanos , Pulmón/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Nasofaringe/microbiología , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/microbiología , Proteolisis/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Streptococcus pneumoniae/efectos de los fármacos
9.
Appl Environ Microbiol ; 82(10): 3143-3148, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26994079

RESUMEN

Currently there are estimated to be approximately 3.7 million contact lens wearers in the United Kingdom and 39.2 million in North America. Contact lens wear is a major risk factor for developing an infection of the cornea known as keratitis due to poor lens hygiene practices. While there is an international standard for testing disinfection methods against bacteria and fungi (ISO 14729), no such guidelines exist for the protozoan Acanthamoeba, which causes a potentially blinding keratitis most commonly seen in contact lens wearers, and as a result, many commercially available disinfecting solutions show incomplete disinfection after 6 and 24 h of exposure. Challenge test assays based on international standard ISO 14729 were used to determine the antimicrobial activity of cold atmospheric gas plasma (CAP) against Pseudomonas aeruginosa, Candida albicans, and trophozoites and cysts of Acanthamoeba polyphaga and Acanthamoeba castellanii P. aeruginosa and C. albicans were completely inactivated in 0.5 min and 2 min, respectively, and trophozoites of A. polyphaga and A. castellanii were completely inactivated in 1 min and 2 min, respectively. Furthermore, for the highly resistant cyst stage of both species, complete inactivation was achieved after 4 min of exposure to CAP. This study demonstrates that the CAP technology is highly effective against bacterial, fungal, and protozoan pathogens. The further development of this technology has enormous potential, as this approach is able to deliver the complete inactivation of ocular pathogens in minutes, in contrast to commercial multipurpose disinfecting solutions that require a minimum of 6 h.


Asunto(s)
Acanthamoeba/efectos de los fármacos , Antiinfecciosos/farmacología , Candida albicans/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Gases em Plasma/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Acanthamoeba/fisiología , Presión Atmosférica , Candida albicans/fisiología , Pseudomonas aeruginosa/fisiología
10.
Chest ; 149(6): 1445-59, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26836936

RESUMEN

BACKGROUND: Bronchial epithelial ciliary dysfunction is an important feature of asthma. We sought to determine the role in asthma of neutrophilic inflammation and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases in ciliary dysfunction. METHODS: Bronchial epithelial ciliary function was assessed by using video microscopy in fresh ex vivo epithelial strips from patients with asthma stratified according to their sputum cell differentials and in culture specimens from healthy control subjects and patients with asthma. Bronchial epithelial oxidative damage was determined by 8-oxo-dG expression. Nicotinamide adenine dinucleotide phosphate oxidase (NOX)/dual oxidase (DUOX) expression was assessed in bronchial epithelial cells by using microarrays, with NOX4 and DUOX1/2 expression assessed in bronchial biopsy specimens. Ciliary dysfunction following NADPH oxidase inhibition, using GKT137831, was evaluated in fresh epithelial strips from patients with asthma and a murine model of ovalbumin sensitization and challenge. RESULTS: Ciliary beat frequency was impaired in patients with asthma with sputum neutrophilia (n = 11) vs those without (n = 10) (5.8 [0.6] Hz vs 8.8 [0.5] Hz; P = .003) and was correlated with sputum neutrophil count (r = -0.70; P < .001). Primary bronchial epithelial cells expressed DUOX1/2 and NOX4. Levels of 8-oxo-dG and NOX4 were elevated in patients with neutrophilic vs nonneutrophilic asthma, DUOX1 was elevated in both, and DUOX2 was elevated in nonneutrophilic asthma in vivo. In primary epithelial cultures, ciliary dysfunction did not persist, although NOX4 expression and reactive oxygen species generation was increased from patients with neutrophilic asthma. GKT137831 both improved ciliary function in ex vivo epithelial strips (n = 13), relative to the intensity of neutrophilic inflammation, and abolished ciliary dysfunction in the murine asthma model with no reduction in inflammation. CONCLUSIONS: Ciliary dysfunction is increased in neutrophilic asthma associated with increased NOX4 expression and is attenuated by NADPH oxidase inhibition.


Asunto(s)
Asma , Cilios/metabolismo , NADPH Oxidasas/metabolismo , Mucosa Respiratoria , Adulto , Animales , Asma/metabolismo , Asma/patología , Asma/fisiopatología , Oxidasas Duales , Femenino , Humanos , Inflamación/metabolismo , Masculino , Ratones , Persona de Mediana Edad , NADPH Oxidasa 4 , Neutrófilos , Estrés Oxidativo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Mucosa Respiratoria/fisiopatología , Estadística como Asunto
11.
J Biol Chem ; 289(36): 25241-9, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25012658

RESUMEN

We have recently shown that RaaS (regulator of antimicrobial-assisted survival), encoded by Rv1219c in Mycobacterium tuberculosis and by bcg_1279c in Mycobacterium bovis bacillus Calmette-Guérin, plays an important role in mycobacterial survival in prolonged stationary phase and during murine infection. Here, we demonstrate that long chain acyl-CoA derivatives (oleoyl-CoA and, to lesser extent, palmitoyl-CoA) modulate RaaS binding to DNA and expression of the downstream genes that encode ATP-dependent efflux pumps. Moreover, exogenously added oleic acid influences RaaS-mediated mycobacterial improvement of survival and expression of the RaaS regulon. Our data suggest that long chain acyl-CoA derivatives serve as biological indicators of the bacterial metabolic state. Dysregulation of efflux pumps can be used to eliminate non-growing mycobacteria.


Asunto(s)
Acilcoenzima A/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Mycobacterium/metabolismo , Acilcoenzima A/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión/genética , ADN Bacteriano/genética , Polarización de Fluorescencia , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/genética , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Mycobacterium/genética , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ácido Oléico/farmacología , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
12.
Am J Respir Crit Care Med ; 190(2): 196-207, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24941423

RESUMEN

RATIONALE: Respiratory syncytial virus (RSV) and Streptococcus pneumoniae are major respiratory pathogens. Coinfection with RSV and S. pneumoniae is associated with severe and often fatal pneumonia but the molecular basis for this remains unclear. OBJECTIVES: To determine if interaction between RSV and pneumococci enhances pneumococcal virulence. METHODS: We used confocal microscopy and Western blot to identify the receptors involved in direct binding of RSV and pneumococci, the effects of which were studied in both in vivo and in vitro models of infection. Human ciliated respiratory epithelial cell cultures were infected with RSV for 72 hours and then challenged with pneumococci. Pneumococci were collected after 2 hours exposure and changes in gene expression determined using quantitative real-time polymerase chain reaction. MEASUREMENTS AND MAIN RESULTS: Following incubation with RSV or purified G protein, pneumococci demonstrated a significant increase in the inflammatory response and bacterial adherence to human ciliated epithelial cultures and markedly increased virulence in a pneumonia model in mice. This was associated with extensive changes in the pneumococcal transcriptome and significant up-regulation in the expression of key pneumococcal virulence genes, including the gene for the pneumococcal toxin, pneumolysin. We show that mechanistically this is caused by RSV G glycoprotein binding penicillin binding protein 1a. CONCLUSIONS: The direct interaction between a respiratory virus protein and the pneumococcus resulting in increased bacterial virulence and worsening disease outcome is a new paradigm in respiratory infection.


Asunto(s)
Coinfección/microbiología , Proteínas de Unión a las Penicilinas/metabolismo , Neumonía Neumocócica/microbiología , Infecciones por Virus Sincitial Respiratorio/microbiología , Virus Sincitiales Respiratorios/metabolismo , Streptococcus pneumoniae/patogenicidad , Proteínas Virales de Fusión/metabolismo , Animales , Adhesión Bacteriana , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Coinfección/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Microscopía Confocal , Neumonía Neumocócica/metabolismo , Neumonía Neumocócica/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/virología , Transcriptoma , Regulación hacia Arriba , Virulencia
13.
PLoS Pathog ; 10(3): e1004026, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24651834

RESUMEN

The pathogenesis of bacteraemia after challenge with one million pneumococci of three isogenic variants was investigated. Sequential analyses of blood samples indicated that most episodes of bacteraemia were monoclonal events providing compelling evidence for a single bacterial cell bottleneck at the origin of invasive disease. With respect to host determinants, results identified novel properties of splenic macrophages and a role for neutrophils in early clearance of pneumococci. Concerning microbial factors, whole genome sequencing provided genetic evidence for the clonal origin of the bacteraemia and identified SNPs in distinct sub-units of F0/F1 ATPase in the majority of the ex vivo isolates. When compared to parental organisms of the inoculum, ex-vivo pneumococci with mutant alleles of the F0/F1 ATPase had acquired the capacity to grow at low pH at the cost of the capacity to grow at high pH. Although founded by a single cell, the genotypes of pneumococci in septicaemic mice indicate strong selective pressure for fitness, emphasising the within-host complexity of the pathogenesis of invasive disease.


Asunto(s)
Bacteriemia/microbiología , Interacciones Huésped-Patógeno/inmunología , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/patogenicidad , Animales , Bacteriemia/genética , Bacteriemia/inmunología , Femenino , Citometría de Flujo , Técnicas de Inactivación de Genes , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Infecciones Neumocócicas/genética , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Virulencia
14.
PLoS One ; 9(2): e88144, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498433

RESUMEN

Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Glicosiltransferasas/genética , Plantas Modificadas Genéticamente/genética , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/administración & dosificación , Streptococcus pneumoniae/inmunología , Agrobacterium tumefaciens/genética , Animales , Cápsulas Bacterianas/inmunología , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnicas de Transferencia de Gen , Glicosiltransferasas/metabolismo , Ratones , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Infecciones Neumocócicas/genética , Infecciones Neumocócicas/inmunología , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/genética , Nicotiana/química , Vacunación
15.
Eur Respir J ; 43(2): 485-96, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23520320

RESUMEN

Respiratory syncytial virus is a major cause of respiratory disease. There are conflicting accounts of the response of human epithelial cells to respiratory syncytial virus and a lack of data on its effect on ciliary function. Our aim was to study the early stages of respiratory syncytial virus infection of primary human basal and ciliated cultures. Using high speed videomicroscopy, we found that ciliary beat frequency was unaffected by respiratory syncytial virus infection over 72 h; however, ciliary dyskinesia significantly increased within 24 h of infection (p<0.05). Transmission electron microscopy revealed that ultrastructural abnormalities were confined to ciliated cells, including increased cilia loss and mitochondrial damage. Confocal immunofluorescence microscopy showed that respiratory syncytial virus antigen gradually spread from the cell surface to the ciliary tip of infected cells over 3 days. Interestingly, ciliated cultures secreted fewer viruses than basal (progenitor) cell cultures and produced a chemokine response focused on recruitment of neutrophils. This study highlights differences in infection models and underscores the need to explore further the role of ciliated cells in the establishment of respiratory syncytial virus infection. Increased ciliary dyskinesia combined with ciliary loss and epithelial damage is likely to result in reduced mucociliary clearance early in the infective process.


Asunto(s)
Trastornos de la Motilidad Ciliar/diagnóstico , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Adulto , Antígenos Virales/metabolismo , Células Cultivadas , Cilios/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Humanos , Microscopía por Video , Persona de Mediana Edad , Depuración Mucociliar , Virus Sincitiales Respiratorios , Células TH1/citología , Adulto Joven
16.
Chest ; 144(5): 1671-1676, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24189859

RESUMEN

BACKGROUND: The mechanism behind why patients with primary ciliary dyskinesia (PCD) exhibit low nasal and exhaled nitric oxide (NO) remains unknown. One hypothesis is that reduced NO biosynthesis is caused by a defect in one or more NO synthases (NOSs). In healthy cells, the biosynthesis of NO is increased following exposure to respiratory pathogens. Here, we aimed to investigate whether ciliated epithelial cells from patients with PCD increase NO production following pneumococcal infection. METHODS: Human respiratory epithelium was cultured to a basal or ciliated cell phenotype using submerged or air-liquid interface cultures, respectively. Cells were exposed to media or pneumococci until cells became damaged (< 4 h). Apical fluids were collected prior and following infection, and NO production was determined using chemiluminescence. NOS gene expression was determined using real-time quantitative polymerase chain reaction. RESULTS: Levels of NO and NOS2 gene expression increased significantly following infection of healthy ciliated epithelial cells but not basal cells. No increase in NO was seen in ciliated cell cultures from patients with PCD, and NOS2 gene expression remained unchanged from baseline. CONCLUSIONS: These results suggest that the biosynthesis of NO in ciliated cells from patients with PCD is abnormal following early bacterial challenge, suggesting an abnormality in the function of inducible NOS in PCD.


Asunto(s)
Regulación de la Expresión Génica , Síndrome de Kartagener/enzimología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico/biosíntesis , ARN/genética , Infecciones del Sistema Respiratorio/enzimología , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/patología , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo II/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones del Sistema Respiratorio/patología
17.
J Eukaryot Microbiol ; 60(5): 539-43, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23869955

RESUMEN

The free-living amoeba Balamuthia mandrillaris causes usually fatal encephalitis in humans and animals. Only limited studies have investigated the efficacy of antimicrobial agents against the organism. Assay methods were developed to assess antimicrobial efficacy against both the trophozoite and cyst stage of B. mandrillaris (ATCC 50209). Amphotericin B, ciclopirox olamine, miltefosine, natamycin, paromomycin, pentamidine isethionate, protriptyline, spiramycin, sulconazole and telithromycin had limited activity with amoebacidal levels of > 135-500 µM. However, diminazene aceturate (Berenil(®) ) was amoebacidal at 7.8 µM and 31.3-61.5 µM for trophozoites and cysts, respectively. Assays for antimicrobial testing may improve the prognosis for infection and aid in the development of primary selective culture isolation media.


Asunto(s)
Antiinfecciosos/farmacología , Balamuthia mandrillaris/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Esporas Protozoarias/efectos de los fármacos
18.
Infect Immun ; 80(12): 4333-43, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23027531

RESUMEN

Streptococcus pneumoniae is an aerotolerant gram-positive bacterium that causes an array of diseases, including pneumonia, otitis media, and meningitis. During aerobic growth, S. pneumoniae produces high levels of H(2)O(2). Since S. pneumoniae lacks catalase, the question of how it controls H(2)O(2) levels is of critical importance. The psa locus encodes an ABC Mn(2+)-permease complex (psaBCA) and a putative thiol peroxidase, tpxD. This study shows that tpxD encodes a functional thiol peroxidase involved in the adjustment of H(2)O(2) homeostasis in the cell. Kinetic experiments showed that recombinant TpxD removed H(2)O(2) efficiently. However, in vivo experiments revealed that TpxD detoxifies only a fraction of the H(2)O(2) generated by the pneumococcus. Mass spectrometry analysis demonstrated that TpxD Cys(58) undergoes selective oxidation in vivo, under conditions where H(2)O(2) is formed, confirming the thiol peroxidase activity. Levels of TpxD expression and synthesis in vitro were significantly increased in cells grown under aerobic versus anaerobic conditions. The challenge with D39 and TIGR4 with H(2)O(2) resulted in tpxD upregulation, while psaBCA expression was oppositely affected. However, the challenge of ΔtpxD mutants with H(2)O(2) did not affect psaBCA, implying that TpxD is involved in the regulation of the psa operon, in addition to its scavenging activity. Virulence studies demonstrated a notable difference in the survival time of mice infected intranasally with D39 compared to that of mice infected intranasally with D39ΔtpxD. However, when bacteria were administered directly into the blood, this difference disappeared. The findings of this study suggest that TpxD constitutes a component of the organism's fundamental strategy to fine-tune cellular processes in response to H(2)O(2).


Asunto(s)
Proteínas Bacterianas/metabolismo , Oxígeno/metabolismo , Peroxidasa/metabolismo , Streptococcus pneumoniae/enzimología , Streptococcus pneumoniae/patogenicidad , Compuestos de Sulfhidrilo/metabolismo , Aerobiosis , Anaerobiosis , Animales , Animales no Consanguíneos , Proteínas Bacterianas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Ratones , Estrés Oxidativo , Peroxidasa/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crecimiento & desarrollo , Virulencia
19.
PLoS Pathog ; 8(4): e1002660, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22563306

RESUMEN

Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-ß between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-ß protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3(+)Helios(+) T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-ß impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-ß signalling is a potential target for immunotherapy or drug design.


Asunto(s)
Neumonía Neumocócica/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Proteínas de Unión al ADN/inmunología , Susceptibilidad a Enfermedades/inmunología , Sistemas de Liberación de Medicamentos , Femenino , Factores de Transcripción Forkhead/inmunología , Ratones , Ratones Endogámicos BALB C , Neumonía Neumocócica/tratamiento farmacológico , Especificidad de la Especie , Streptococcus pneumoniae/inmunología , Factores de Transcripción/inmunología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores
20.
Mol Microbiol ; 81(5): 1255-70, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21736642

RESUMEN

High levels of copper are toxic and therefore bacteria must limit free intracellular levels to prevent cellular damage. In this study, we show that a number of pneumococcal genes are differentially regulated by copper, including an operon encoding a CopY regulator, a protein of unknown function (CupA) and a P1-type ATPase, CopA, which is conserved in all sequenced Streptococcus pneumoniae strains. Transcriptional analysis demonstrated that the cop operon is induced by copper in vitro, repressed by the addition of zinc and is autoregulated by the copper-responsive CopY repressor protein. We also demonstrate that the CopA ATPase is a major pneumococcal copper resistance mechanism and provide the first evidence that the CupA protein plays a role in copper resistance. Our results also show that copper homeostasis is important for pneumococcal virulence as the expression of the cop operon is induced in the lungs and nasopharynx of intranasally infected mice, and a copA(-) mutant strain, which had decreased growth in high levels of copper in vitro, showed reduced virulence in a mouse model of pneumococcal pneumonia. Furthermore, using the copA(-) mutant we observed for the first time in any bacteria that copper homeostasis also appears to be required for survival in the nasopharynx.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Homeostasis , Proteínas Represoras/metabolismo , Streptococcus pneumoniae/metabolismo , Adenosina Trifosfatasas/genética , Animales , Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/genética , ATPasas Transportadoras de Cobre , Regulación Bacteriana de la Expresión Génica , Pulmón/microbiología , Ratones , Nasofaringe/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Neumonía Neumocócica/microbiología , Regiones Promotoras Genéticas , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidad , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA