Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405748

RESUMEN

Inflammatory Bowel Disease ( IBD ) is a chronic and often debilitating autoinflammatory condition, with an increasing incidence in children. Standard-of-care therapies lead to sustained transmural healing and clinical remission in fewer than one-third of patients. For children, TNFα inhibition remains the only FDA-approved biologic therapy, providing an even greater urgency to understanding mechanisms of response. Genome-wide association studies ( GWAS ) have identified 418 independent genetic risk loci contributing to IBD, yet the majority are noncoding and their mechanisms of action are difficult to decipher. If causal, they likely alter transcription factor ( TF ) binding and downstream gene expression in particular cell types and contexts. To bridge this knowledge gap, we built a novel resource: multiome-seq (tandem single-nuclei ( sn )RNA-seq and chromatin accessibility ( snATAC )-seq) of intestinal tissue from pediatric IBD patients, where anti-TNF response was defined by endoscopic healing. From the snATAC-seq data, we generated a first-time atlas of chromatin accessibility (putative regulatory elements) for diverse intestinal cell types in the context of IBD. For cell types/contexts mediating genetic risk, we reasoned that accessible chromatin will co-localize with genetic disease risk loci. We systematically tested for significant co-localization of our chromatin accessibility maps and risk variants for 758 GWAS traits. Globally, genetic risk variants for IBD, autoimmune and inflammatory diseases are enriched in accessible chromatin of immune populations, while other traits (e.g., colorectal cancer, metabolic) are enriched in epithelial and stromal populations. This resource opens new avenues to uncover the complex molecular and cellular mechanisms mediating genetic disease risk.

2.
Inflamm Bowel Dis ; 28(7): 988-1003, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35259271

RESUMEN

BACKGROUND: Perturbagen analysis of Crohn's disease (CD) ileal gene expression data identified small molecules including eicosatetraynoic acid (ETYA), which may exert an antifibrotic effect. We developed a patient-specific human intestinal organoid (HIO) model system to test small molecule regulation of mitochondrial and wound-healing functions implicated in stricturing behavior. METHODS: HIOs were made from CD induced pluripotent stem cells with and without a loss-of-function haplotype in the DUOX2 gene implicated in ileal homeostasis and characterized under basal conditions and following exposure to butyrate and ETYA using RNA sequencing, flow cytometry, and immunofluorescent and polarized light microscopy. Mitochondrial activity was measured using high-resolution respirometry and tissue stiffness using atomic force microscopy. RESULTS: HIOs expressed core mitochondrial and extracellular matrix (ECM) genes and enriched biologic functions implicated in CD ileal strictures; ECM gene expression was suppressed by both butyrate and ETYA, with butyrate also suppressing genes regulating epithelial proliferation. Consistent with this, butyrate, but not ETYA, exerted a profound effect on HIO epithelial mitochondrial function, reactive oxygen species production, and cellular abundance. Butyrate and ETYA suppressed HIO expression of alpha smooth muscle actin expressed by myofibroblasts, type I collagen, and collagen protein abundance. HIOs exhibited tissue stiffness comparable to normal human ileum; this was reduced by chronic ETYA exposure in HIOs carrying the DUOX2 loss-of-function haplotype. CONCLUSIONS: ETYA regulates ECM genes implicated in strictures and suppresses collagen content and tissue stiffness in an HIO model. HIOs provide a platform to test personalized therapeutics, including small molecules prioritized by perturbagen analysis.


A subset of pediatric Crohn's disease patients develop intestinal strictures requiring surgery. The microbial metabolite butyrate and eicosatetraynoic acid regulate pathways implicated in stricture formation in a human intestinal organoid model system, which may be used to test new therapies.


Asunto(s)
Enfermedad de Crohn , Butiratos/metabolismo , Butiratos/farmacología , Colágeno/metabolismo , Constricción Patológica/metabolismo , Enfermedad de Crohn/genética , Oxidasas Duales/metabolismo , Matriz Extracelular/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mitocondrias/metabolismo , Organoides/metabolismo
3.
J Biol Chem ; 290(8): 4759-4771, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25561725

RESUMEN

Bone morphogenetic proteins (BMPs) are antagonized through the action of numerous extracellular protein antagonists, including members from the differential screening-selected gene aberrative in neuroblastoma (DAN) family. In vivo, misregulation of the balance between BMP signaling and DAN inhibition can lead to numerous disease states, including cancer, kidney nephropathy, and pulmonary arterial hypertension. Despite this importance, very little information is available describing how DAN family proteins effectively inhibit BMP ligands. Furthermore, our understanding for how differences in individual DAN family members arise, including affinity and specificity, remains underdeveloped. Here, we present the structure of the founding member of the DAN family, neuroblastoma suppressor of tumorigenicity 1 (NBL1). Comparing NBL1 to the structure of protein related to Dan and Cerberus (PRDC), a more potent BMP antagonist within the DAN family, a number of differences were identified. Through a mutagenesis-based approach, we were able to correlate the BMP binding epitope in NBL1 with that in PRDC, where introduction of specific PRDC amino acids in NBL1 (A58F and S67Y) correlated with a gain-of-function inhibition toward BMP2 and BMP7, but not GDF5. Although NBL1(S67Y) was able to antagonize BMP7 as effectively as PRDC, NBL1(S67Y) was still 32-fold weaker than PRDC against BMP2. Taken together, this data suggests that alterations in the BMP binding epitope can partially account for differences in the potency of BMP inhibition within the DAN family.


Asunto(s)
Proteína Morfogenética Ósea 2/antagonistas & inhibidores , Proteína Morfogenética Ósea 7/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intercelular/química , Mutación Missense , Proteínas/química , Sustitución de Aminoácidos , Animales , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 7/química , Proteína Morfogenética Ósea 7/genética , Células CHO , Proteínas de Ciclo Celular , Cricetinae , Cricetulus , Citocinas , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Mutagénesis , Estructura Terciaria de Proteína , Proteínas/genética , Relación Estructura-Actividad
4.
Cell ; 129(5): 879-90, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17540169

RESUMEN

The heritability of B cell chronic lymphocytic leukemia (CLL) is relatively high; however, no predisposing mutation has been convincingly identified. We show that loss or reduced expression of death-associated protein kinase 1 (DAPK1) underlies cases of heritable predisposition to CLL and the majority of sporadic CLL. Epigenetic silencing of DAPK1 by promoter methylation occurs in almost all sporadic CLL cases. Furthermore, we defined a disease haplotype, which segregates with the CLL phenotype in a large family. DAPK1 expression of the CLL allele is downregulated by 75% in germline cells due to increased HOXB7 binding. In the blood cells from affected family members, promoter methylation results in additional loss of DAPK1 expression. Thus, reduced expression of DAPK1 can result from germline predisposition, as well as epigenetic or somatic events causing or contributing to the CLL phenotype.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Regulación hacia Abajo , Regulación Leucémica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/genética , Desequilibrio Alélico , Animales , Apoptosis , Linfocitos B/citología , Cromosomas Humanos Par 9 , Metilación de ADN , Análisis Mutacional de ADN , Proteínas Quinasas Asociadas a Muerte Celular , Epigénesis Genética , Femenino , Mutación de Línea Germinal , Proteínas de Homeodominio/metabolismo , Humanos , Células Híbridas , Células Jurkat , Masculino , Ratones , Linaje , Mutación Puntual , Regiones Promotoras Genéticas , Transcripción Genética
5.
Mol Biol Cell ; 14(12): 4958-70, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12960420

RESUMEN

Polarized cell growth requires the coupling of a defined spatial site on the cell cortex to the apparatus that directs the establishment of cell polarity. In the budding yeast Saccharomyces cerevisiae, the Ras-family GTPase Rsr1p/Bud1p and its regulators select the proper site for bud emergence on the cell cortex. The Rho-family GTPase Cdc42p and its associated proteins then establish an axis of polarized growth by triggering an asymmetric organization of the actin cytoskeleton and secretory apparatus at the selected bud site. We explored whether a direct linkage exists between the Rsr1p/Bud1p and Cdc42p GTPases. Here we show specific genetic interactions between RSR1/BUD1 and particular cdc42 mutants defective in polarity establishment. We also show that Cdc42p coimmunoprecipitated with Rsr1p/Bud1p from yeast extracts. In vitro studies indicated a direct interaction between Rsr1p/Bud1p and Cdc42p, which was enhanced by Cdc24p, a guanine nucleotide exchange factor for Cdc42p. Our findings suggest that Cdc42p interacts directly with Rsr1p/Bud1p in vivo, providing a novel mechanism by which direct contact between a Ras-family GTPase and a Rho-family GTPase links the selection of a growth site to polarity establishment.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/fisiología , Factores de Intercambio de Guanina Nucleótido , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Ciclo Celular/genética , Clonación Molecular , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína/genética , Proteínas Proto-Oncogénicas/genética , Saccharomyces cerevisiae/genética , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA