Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Foods ; 12(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37835303

RESUMEN

This study investigated the replacement of butter with soy wax (SW)/rice bran oil (RBO) oleogel in varied proportions in cookie dough and the resulting cookies. The study mainly evaluates the physical, textural, and chemical properties of the butter cookie dough and cookies by replacing butter with SW/RBO oleogel. The dough was assessed using moisture analysis, microscopy, FTIR Spectroscopy (Fourier Transform Infrared) and impedance spectroscopies, and texture analysis. Micrographs of the dough showed that D-50 (50% butter + 50% oleogel) had an optimal distribution of water and protein. D-0 (control sample containing 100% butter) showed the lowest impedance values. Moisture content ranged between 23% and 25%. FTIR spectroscopy suggested that D-50 exhibited a consistent distribution of water and protein, which CLSM and brightfield microscopy supported. Texture analysis revealed that the dough samples exhibited predominantly fluidic behavior. As the amount of oleogel was raised, the dough became firmer. The prepared cookies showed a brown periphery and light-colored center. Further, a corresponding increase in surface cracks was observed as the oleogel content was increased. Cookies moisture analysis revealed a range between 11 and 15%. Minute changes were observed in the texture and dimensions of the cookies. In summary, it can be concluded that replacing butter with oleogel by up to 50% seems to be feasible without significantly compromising the physicochemical properties of cookie dough and cookies.

2.
Polymers (Basel) ; 15(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688251

RESUMEN

In previous works, we had found that the addition of micron-sized, irregular-shaped aluminum (Al) powder, or Al nano platelets (flakes), improved the mechanical properties of polyesters, and that, additionally, the flakes led to an increase in electrical conductivity. The aim of this work was to examine the effect of nano-spherical particles of aluminum in a 60/40 PBT/PET polyester blend. A blend was used because it can help with the formation of a segregated network of metal particles that allows electrical conductivity at low loading. The notched Izod impact of Al nano-spherical composites increased with nano Al content up to an addition level of 2 vol.%. However, the tensile strength and flexural strength decreased gradually with increasing filler loading. Thus, the spherical shape and nano size of the Al particle caused it to be less effective than the micron-sized, irregular-shaped Al powder, or the Al flakes. The reason for this is that, while nano spherical particles have high surface area for bonding with the matrix, the Al-Al aggregation stands in the way of wetting by the polymer melt, whereas aggregation in flakes does not cause as much of a problem. The segregated network structure to enhance electrical conductivity did not form in this blend system with nano spherical particles. The nano-spherical Al acted as a nucleating agent but did not cause transesterification between the two polyesters or make it more susceptible to degradation.

3.
Materials (Basel) ; 16(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37445127

RESUMEN

Zirconia (ZrO2) nanoparticles (1-3 wt.%) were incorporated into the epoxy matrix using the ultra-sonication mixing method of dispersion to manufacture nanocomposite coatings. An automatic applicator was used to prepare the coating samples on a stainless steel substrate. The influence of ZrO2 nanoparticles on the physicochemical characteristics of epoxy coatings was evaluated using energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), thermos-gravimetric analysis (TGA), elastic modulus, and micro-hardness measurement with the nano-indentation technique. The corrosion stability during immersion in 3.5% NaCl solution was monitored using electrochemical impedance spectroscopy (EIS). All ZrO2-containing coatings showed better corrosion stability and adhesion than pure epoxy coating. Epoxy coating incorporated with 2% ZrO2 exhibited the greatest values of corrosion resistance and adhesion due to the effect of nanoparticle properties and their better de-agglomeration in the epoxy matrix than pure epoxy coating.

4.
Gels ; 9(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36661813

RESUMEN

This research evaluated the influence of stearic acid, sunflower lecithin, and sorbitan monooleate on soy wax (SYW)/rice bran oil (RBO)-based oleogels. The physiochemical behavior of oleogel samples was evaluated using colorimetry, microscopy, FTIR, mechanical, crystallization kinetics, X-ray diffraction, and a drug release investigation. The prepared oleogels were light yellow, and adding emulsifiers did not change their appearance. All oleogels showed an oil binding capacity of >98%, independent of emulsifier treatment. The surface topography revealed that emulsifiers smoothed the surface of the oleogels. Bright-field and polarized micrographs showed the presence of wax grains and needles. FTIR spectra indicated that oleogel samples had the same functional group diversity as the raw materials. The oleogel samples lacked a hydrogen-bonding peak. Hence, we postulated that non-covalent interactions were involved in the oleogel preparation. According to stress relaxation studies, the firmness and elastic component of oleogels were unaffected by emulsifiers. However, EML3 (oleogel containing sorbitan monooleate) showed lower relaxing characteristics than the others. EML3 exhibited the slowest crystallization profile. Due to its low d-spacing, EML3 was found to have densely packed crystal molecules and the largest crystallite size. The in vitro drug release studies showed that emulsifier-containing oleogels dramatically affected curcumin release. These results may help customize oleogels properties to adjust bioactive component release in the food and pharmaceutical industries.

5.
Gels ; 8(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35735674

RESUMEN

Bigels are biphasic semisolid systems that have been explored as delivery vehicles in the food and pharmaceutical industries. These formulations are highly stable and have a longer shelf-life than emulsions. Similarly, cellulose-based hydrogels are considered to be ideal for these formulations due to their biocompatibility and flexibility to mold into various shapes. Accordingly, in the present study, the properties of an optimized guar gum hydrogel and sesame oil/candelilla wax oleogel-based bigel were tailored using date palm-derived cellulose nanocrystals (dp-CNC). These bigels were then explored as carriers for the bioactive molecule moxifloxacin hydrochloride (MH). The preparation of the bigels was achieved by mixing guar gum hydrogel and sesame oil/candelilla wax oleogel. Polarizing microscopy suggested the formation of the hydrogel-in-oleogel type of bigels. An alteration in the dp-CNC content affected the size distribution of the hydrogel phase within the oleogel phase. The colorimetry studies revealed the yellowish-white color of the samples. There were no significant changes in the FTIR functional group positions even after the addition of dp-CNC. In general, the incorporation of dp-CNC resulted in a decrease in the impedance values, except BG3 that had 15 mg dp-CNC in 20 g bigel. The BG3 formulation showed the highest firmness and fluidity. The release of MH from the bigels was quasi-Fickian diffusion mediated. BG3 showed the highest release of the drug. In summary, dp-CNC can be used as a novel reinforcing agent for bigels.

6.
Polymers (Basel) ; 14(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35566879

RESUMEN

There is a demand for long afterglow composites due to their potential applications in nighttime signal boards, sensors, and biomedical areas. In this study, Polypropylene (PP)/strontium aluminate-based composites [SrAl2O4:Eu2+/Dy3+ (SAO1) and Sr4Al14O25: Eu+2, Dy+3 (SAO2)] with maleic anhydride grafted PP compatibilizer (PRIEX) were prepared, and their auto-glowing properties were examined. After UV excitation at 320 nm, the PP/5PRIEX/SAO1 composites showed green emission at 520 nm, and blue emission was observed for PP/5PRIEX/SAO2 around 495 nm. The intensity of phosphorescence emission and phosphorescence decay was found to be proportional to the filler content (SAO1 and SAO2). The FTIR analysis excluded the copolymerization reaction between the SAO1 and SAO2 fillers and the PP matrix during the high-temperature melt mixing process. The SAO1 and SAO2 fillers decreased the overall crystallinity of the composites without affecting the Tm and Tc (melting and crystallization temperature) values. The thermal stability of the composites was slightly improved with the SAO1 and SAO2 fillers, as seen from the TGA curve. Due to the plasticizing effect of the compatibilizer and the agglomeration of the SAO1 and SAO2 fillers, the tensile modulus, tensile strength, and storage modulus of the composites was found to be decreased with an increase in the SAO1 and SAO2 content. The decreasing effect was more pronounced, especially with the bulk-sized SAO2 filler.

7.
Polymers (Basel) ; 14(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215581

RESUMEN

Herein, we present new approaches for developing sulfonated polyether ether ketone (SPEEK) and polyaniline-based (PANI) actuator formed by film-casting and chemical reduction of Pt electrodes. We have thoroughly studied the synthesis of SPEEK and characterized it by different analytical techniques. The ion-exchange capacity (IEC) and proton conductivity of SPEEK-PANI polymer membrane were calculated to be 1.98 mmol g-1 and 1.97 × 10-3 S cm-1, respectively. To develop an IPMC actuator, SPEEK was combined with PANI through in-situ polymerization method. SEM and XRD were used to check the morphology of the given SPEEK-PANI-Pt membrane. In addition, FT-IR and EDX techniques confirmed the molecular structure and chemical conformation of SPEEK-PANI polymer membrane. Pt electrode layers homogeneously dispersed on the IPMC membrane surface, which was demonstrated by smooth SEM micrographs. The actuation functioning, including the high bending deflection, proton conductivity, current density and IEC of IPMC actuator based on SPEEK-PANI-Pt, was obtained owing to its strong electrochemical and electromechanical characteristics. Synergistic combinations of SPEEK and PANI produced membrane that are flexible, mechanically strong and robust. The developed materials have immense capability as actuators for various applications including in biomimetics and robotics.

8.
Polymers (Basel) ; 14(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35160620

RESUMEN

Previously, we reported that amorphous poly(ethylene terephthalate) (PET) filled with irregular nodular aluminium (Al) particles gave simultaneous increases in tensile modulus, tensile strength, and impact resistance, which is unusual for materials. Here, we investigated the effect of the particle shape and size by using nano-platelet Al. The Al nano-platelets had a thickness higher than graphenes and clays, but lower than mica and talc, and due to their large widths, they had high aspect ratios. Due to the ductility of Al, the platelets maintained the high aspect ratio and did not snap during injection moulding. In addition to avoiding the usual drop in tensile strength and impact, the composites with nano Al platelets gave an unusually high flexural modulus (8 GPa), which was almost double that attained practically with talc, mica, and graphene. This was because of the high tendency of the Al nano platelets to become oriented during moulding. The Al-PET composite would be a more cost-and-performance effective combination for making conductive composites. The Al is a cheaper material than graphene, surface treatment for adhesion (to PET) is unnecessary, and dispersion issues, such as exfoliation and de-aggregation, are not a problem.

9.
Polymers (Basel) ; 13(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922265

RESUMEN

A tremendous potential has been observed in the designing of long afterglow materials for sensing, bioimaging, and encryption applications. In this study, two different strontium aluminate-based luminescent materials; SrAl2O4: Eu, Dy (S1), and Sr4Al14O25: Eu, Dy (S2) were melt-mixed with polypropylene (PP) matrix, and the phosphorescence properties were evaluated. After excitation at 320 nm, the PP/S1 composite exhibited a green emission and the PP/S2 generated a blue emission at 520 nm and 495 nm, respectively. The emission spectra intensity increased by increasing the content of these luminescent fillers. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) experiments show that no chemical reaction occurred during the melt-mixing process. The differential scanning calorimetry (DSC) results revealed that the total crystallinity of the composites reduced by increasing the amount of the fillers; however, no changes in the temperature of melting (Tm) and crystallization (Tc) of PP were observed. Both fillers improved the impact strength of the composites, but the tensile strength (TS) and modulus (TM) decreased. Poly (ethylene glycol) dimethyl ether (P) plasticizer was used to improve the filler-matrix interaction and its dispersion; nevertheless, it adversely affected the intensity of the luminescence emissions.

10.
Polymers (Basel) ; 13(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672974

RESUMEN

The wastage of food products is a major challenge for the food industry. In this regard, the use of edible films and coatings have gained much attention due to their ability to prevent the spoilage of the food products during handling, transport, and storage. This has effectively helped in extending the shelf-life of the food products. Among the various polymers, polysaccharides have been explored to develop edible films and coatings in the last decade. Such polymeric systems have shown great promise in microbial food safety applications. The inclusion of essential oils (EOs) within the polysaccharide matrices has further improved the functional properties of the edible films and coatings. The current review will discuss the different types of polysaccharides, EOs, methods of preparing edible films and coatings, and the characterization methods for the EO-loaded polysaccharide films. The mechanism of the antimicrobial activity of the EOs has also been discussed in brief.

11.
Gels ; 6(4)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238509

RESUMEN

In this work, oleogels of cocoa butter (CB), rice bran oil (RBO), and graphene oxide (GO) were prepared. The prepared oleogels were subjected to various characterization techniques such as bright-field microscopy, X-ray diffraction (XRD), crystallization kinetics, differential scanning calorimetry (DSC), and mechanical studies. The influence of increasing GO content on the in vitro drug release and ex vivo corneal permeation of the model drug (ciprofloxacin HCl-CPH) from the oleogels was also investigated. Bright-field micrographs showed that increment in GO content reduced the size of the globular particles of CB. XRD analysis revealed that CB was crystallized in its ß' and ß polymorphic forms in the oleogels, which was in agreement with thermal studies. The mechanical characterization demonstrated that the presence of GO improved the elastic nature and stress-bearing properties of the oleogels. Moreover, GO altered the crystallization kinetics of CB in the oleogels in a composition-dependent manner. The in vitro release of CPH from the oleogels occurred through either Fickian diffusion or fat network relaxation or a combination thereof. Furthermore, the inclusion of GO enhanced the ex vivo permeation of CPH molecules across the caprine cornea. Hence, we concluded that the prepared oleogels could be explored as potential delivery systems for ophthalmic applications.

12.
Polymers (Basel) ; 12(9)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911602

RESUMEN

Metal-plastic composites have the potential to combine enhanced electrical and thermal conductivity with a lower density than a pure metal. The drawback has often been brittleness and low impact resistance caused by weak adhesion between the metal filler and the plastic. Based on our observation that aluminum foil sticks very strongly to poly(ethylene terephthalate) (PET) if it is used as a backing during compression moulding, this work set out to explore PET filled with a micro and a nano aluminum (Al) powder. In line with other composites using filler particles with low aspect-ratio, the tensile modulus increased somewhat with loading. However, unlike most particle composites, the strength did not decrease and most surprisingly, the Izod impact resistance increased, and in fact more than doubled with certain compositions. Thus, the Al particles acted as a toughening agent without decreasing the modulus and strength. This would be the first case where addition of a metal powder to a plastic increased the modulus and impact resistance simultaneously. The Al particles also acted as nucleating agents but it was not sufficient to make PET crystallize as fast as the injection moulding polyester, poly(butylene terephthalate) (PBT).

13.
Int J Biol Macromol ; 164: 1608-1620, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763397

RESUMEN

In this study, we developed tamarind gum (TG) and rice bran oil (RBO)-based emulgels. The control formulation (TR0), did not contain RBO. The emulgels were named as TR1, TR2, TR3, and TR4, which contained 5% (w/w), 10% (w/w), 15% (w/w), and 20% (w/w/) of RBO, respectively. The microscopic studies showed that the emulgels were biphasic in nature. FTIR spectroscopy revealed the reduction in the hydrogen bonding with an increase in the RBO content. Impedance profiles suggested that the resistive component of the emulgels was increased as the RBO content was increased. The thermal analysis suggested that the addition of RBO reduced the water holding capacity of the emulgels. Stress relaxation studies revealed that the fluidic component was considerably higher in TG/RBO-based emulgels as compared to TR0. In vitro release study of the model drug (ciprofloxacin HCl; a hydrochloride salt of ciprofloxacin) suggested a significantly lower release from the emulgel matrices (TR1-TR4) in comparison to TR0. However, ex vivo corneal permeation of the drug increased with an increase in the RBO content. Since the emulgels were able to improve the corneal permeation of the model drug, the emulgels can be explored to deliver drugs to the internal structures of the eye.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/química , Aceites de Plantas/química , Aceite de Salvado de Arroz/química , Tamarindus/química , Ciprofloxacina/administración & dosificación , Ciprofloxacina/química , Ojo/efectos de los fármacos , Enlace de Hidrógeno
14.
Polymers (Basel) ; 12(3)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151079

RESUMEN

In this study, the effect of different polypropylene (PP) matrices (homopolymer (HPP), impact copolymer (ICP), and recycled polypropylene (rPP)) on the mechanical, morphological, and thermal properties of date palm fiber (DPF)-reinforced PP composites was investigated. The DPFs were treated with an alkali solution, and composites were fabricated with different DPF loadings (5, 10, and 15 wt %) and lengths (less than 2 mm and 8-12 mm). It was found that the tensile properties of the DPF/ICP and DPF/rPP composites were similar to those of the DPF/HPP composites. The addition of fiber to the matrix reduced its tensile strength but increased the modulus. The alkali treatment improved the compatibility between the fibers and the matrix by removing hemicellulose and other impurities. Fourier transform infrared spectroscopy confirmed hemicellulose removal. The morphology of the alkali-treated fractured tensile specimen revealed improved adhesion and less fiber pull out. Differential scanning calorimetry revealed that the alkali treatment enhanced the crystallinity index. Thermogravimetric analysis showed that the addition of DPFs into the PP matrix reduced the thermal stability of the composite. However, the thermal stability of the treated fiber-reinforced rPP and ICP composites was similar to that of the DPF/HPP composite. Hence, rPP can be used as an alternative to HPP with DPFs.

15.
Sci Total Environ ; 619-620: 311-318, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29154049

RESUMEN

The application of biochar (BC) as a filler in polymers can be viewed as a sustainable approach that incorporates pyrolysed waste based value-added material and simultaneously mitigate bio-waste in a smart way. The overarching aim of this work was to investigate the electrical, mechanical, thermal and rheological properties of biocomposite developed by utilizing date palm waste-derived BC for the reinforcing of polypropylene (PP) matrix. Date palm waste derived BC prepared at (700 and 900°C) were blended at different proportions with polypropylene and the resultant composites (BC/PP) were characterized using an array of techniques (scanning electron microscope, energy-dispersive X-ray spectroscopy and Fourier transform infra-red spectroscopy). Additionally the thermal, mechanical, electrical and rheological properties of the BC/PP composites were evaluated at different loading of BC content (from 0 to15% w/w). The mechanical properties of BC/PP composites showed an improvement in the tensile modulus while that of electrical characterization revealed an enhanced electrical conductivity with increased BC loading. Although the BC incorporation into the PP matrix has significantly reduced the total crystallinity of the resulted composites, however; a positive effect on the crystallization temperature (Tc) was observed. The rheological characterization of BC/PP composites revealed that the addition of BC had minimal effect on the storage modulus (G') compared to the neat (PP).

16.
J Food Sci ; 81(2): E380-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26677007

RESUMEN

Modulation of crystallization of stearic acid and its derivatives is important for tuning the properties of stearate oleogels. The present study delineates the crystallization of stearic acid in stearate oleogels in the presence of Span 60. Microarchitecture analysis revealed that stearic acid crystals in the oleogels changed its shape from plate-like structure to a branched architecture in the presence of Span 60. Consequently, a significant variation in the mobility of the solute molecules inside the oleogel (Fluorescence recovery after photobleaching studies, FRAP analysis) was observed. Thermal analysis (gelation kinetics and DSC) revealed shortening of nucleation induction time and secondary crystallization with an increase in the Span 60 concentration. Furthermore, isosolid diagram suggested better physical stability of the formulations at higher proportions of Span 60. XRD analysis indicated that there was a decrease in the crystal size and the crystallinity of the stearic acid crystals with an increase in Span 60 concentration in the Span 60 containing oleogels. However, crystal growth orientation was unidirectional and found unaltered with Span 60 concentration (Avarmi analysis using DSC data). The mechanical study indicated a composition-dependent variation in the viscoelastic properties (instantaneous [τ1 ], intermediate [τ2 ], and delayed [τ3 ] relaxation times) of the formulations. In conclusion, Span 60 can be used to alter the kinetics of the crystallization, crystal habit and crystal structure of stearic acid. This study provides a number of clues that could be used further for developing oleogel based formulation.


Asunto(s)
Hexosas/química , Ácidos Esteáricos/química , Cristalización , Elasticidad , Geles/química , Cinética , Compuestos Orgánicos/química , Temperatura , Viscosidad
17.
J Mater Sci Mater Med ; 25(3): 703-21, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24327110

RESUMEN

Gels have been considered as a popular mode of delivering medicament for the treatment of sexually transmitted diseases (STDs) (e.g. human immunodeficiency virus, bacterial vaginosis, epididymitis, human papillomavirus infection and condylomata acuminata etc.). The present study discusses the development of novel olive oil based emulsion hydrogels (EHs) using sorbitan monopalmitate as the structuring agent. The developed EHs may be tried as drug delivery vehicle for the treatment of STDs. The formation of EHs was confirmed by fluorescence and confocal microscopy. FTIR studies suggested intermolecular hydrogen bonding amongst the components of the EHs. X-ray diffraction study suggested the amorphous nature of the EHs. The developed EHs have shown non-Newtonian flow behavior. The EHs were found to be biocompatible. The formulations were able to effectively deliver two model antimicrobial drugs (e.g. ciprofloxacin and metronidazole), commonly used in the treatment of the STDs.


Asunto(s)
Antibacterianos/administración & dosificación , Bacillus subtilis/fisiología , Preparaciones de Acción Retardada/síntesis química , Hexosas/química , Hidrogeles/química , Aceites de Plantas/química , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Difusión , Emulsiones , Calor , Ensayo de Materiales , Aceite de Oliva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA