Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Pharmaceutics ; 16(3)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38543212

RESUMEN

In this study, liposomes coated with novel multifunctional polymers were proposed as an innovative platform for tumor targeted drug delivery. Novel Folic acid-Cysteine-Thiolated chitosan (FTC) derivatives possessing active targeting ability and redox responsivity were synthesized, characterized, and employed to develop FTC-coated liposomes. Liposomes were characterized for size, surface charge and drug encapsulation efficiency before and after coating. The formation of a coating layer on liposomal surface was confirmed by the slight increase in particle size and by zeta-potential changes. FTC-coated liposomes showed a redox-dependent drug release profile: good stability at physiological conditions and rapid release of liposome-entrapped calcein in presence of glutathione. Moreover, the uptake and cytotoxic activity of doxorubicin-loaded FTC-coated liposomes was evaluated on murine B16-F10 and human SKMEL2 melanoma cancer cells. Results demonstrated enhanced uptake and antitumor efficacy of FTC-coated liposomes compared to control chitosan-coated liposomes in both cancer lines, which is attributed to higher cellular uptake via folate receptor-mediated endocytosis and to triggered drug release by the reductive microenvironment of tumor cells. The proposed novel liposomes show great potential as nanocarriers for targeted therapy of cancer.

2.
J Liposome Res ; : 1-26, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520185

RESUMEN

Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.

3.
Biomolecules ; 12(10)2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36291571

RESUMEN

Relaxin (RLX) is a protein that is structurally similar to insulin and has interesting biological activities. As with all proteins, preservation of RLX's structural integrity/biological functionality is problematic. Herein, we investigated two methods for increasing the duration of relaxin-2's (RLX2) biological activity: synthesis of a palmitoyl RLX2 conjugate (P-RLX2) with the use of a Palmitoyl-l-Glu-OtBu peptide modifier, and encapsulation into liposomes of P-RLX2, RLX2, and its oxidized form (O-RLX2). For liposomal encapsulation thin-film hydration and DRV methods were applied, and different lipid compositions were tested for optimized protein loading. RLX2 and O-RLX2 were quantified by HPLC. The capability of the peptides/conjugate to stimulate transfected cells to produce cyclic adenosine monophosphate (cAMP) was used as a measure of their biological activity. The stability and bioactivity of free and liposomal RLX2 types were monitored for a 30 d period, in buffer (in some cases) and bovine serum (80%) at 37 °C. The results showed that liposome encapsulation substantially increased the RLX2 integrity in buffer; PEGylated liposomes demonstrated a higher protection. Liposome encapsulation also increased the stability of RLX2 and O-RLX2 in serum. Considering the peptide's biological activity, cAMP production of RLX2 was higher than that of the oxidized form and the P-RLX2 conjugate (which demonstrated a similar activity to O-RLX2 when measured in buffer, but lower when measured in the presence of serum proteins), while liposome encapsulation resulted in a slight decrease of bioactivity initially, but prolonged the peptide bioactivity during incubation in serum. It was concluded that liposome encapsulation of RLX2 and synthetic modification to P-RLX2 can both prolong RLX2 peptide in vitro stability; however, the applied chemical conjugation results in a significant loss of bioactivity (cAMP production), whereas the effect of liposome entrapment on RLX2 activity was significantly lower.


Asunto(s)
Insulinas , Relaxina , Liposomas/química , Polietilenglicoles , Lípidos , Adenosina Monofosfato
4.
Pharmaceutics ; 14(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36015274

RESUMEN

Arsonolipids represent a class of arsenic-containing compounds with interesting biological properties either as monomers or as nanostructure forming components, such as arsonoliposomes that possess selective anticancer activity as proven by in vitro and in vivo studies. In this work, we describe, for the first time, the synthesis of novel arsono-containing lipids where the alkyl groups are connected through stable ether bonds. It is expected that this class of arsonolipids, compared with the corresponding ester linked, will have higher chemical stability. To accomplish this task, a new methodology of general application was developed, where a small arsono compound, 2-hydroxyethylarsonic acid, when protected with thiophenol, can be used in an efficient and simple way as a building block for the synthesis of arsono-containing lipids as well as other arsono-containing biomolecules. Thus, besides the above-mentioned arsonolipid, an arsono cholesterol derivative was also obtained. Both ether arsonolipid and arsono cholesterol were able to form liposomes having similar physicochemical properties and integrity to conventional arsonoliposomes. Furthermore, a preliminary in vitro anticancer potential assessment of the novel ether arsonolipid containing liposomes against human prostate cancer (PC-3) and Lewis lung carcinoma (LLC) cells showed significant activity (dose- and time-dependent), which was similar to that of the conventional arsonoliposomes (studied before). Given the fact that novel arsonolipids may be more stable compared to the ones used in conventional arsonoliposomes, the current results justify further exploitation of the novel compounds by in vitro and in vivo studies.

5.
EMBO Mol Med ; 14(2): e13631, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34898002

RESUMEN

Malignant pleural mesothelioma (MPM) arises from mesothelial cells lining the pleural cavity of asbestos-exposed individuals and rapidly leads to death. MPM harbors loss-of-function mutations in BAP1, NF2, CDKN2A, and TP53, but isolated deletion of these genes alone in mice does not cause MPM and mouse models of the disease are sparse. Here, we show that a proportion of human MPM harbor point mutations, copy number alterations, and overexpression of KRAS with or without TP53 changes. These are likely pathogenic, since ectopic expression of mutant KRASG12D in the pleural mesothelium of conditional mice causes epithelioid MPM and cooperates with TP53 deletion to drive a more aggressive disease form with biphasic features and pleural effusions. Murine MPM cell lines derived from these tumors carry the initiating KRASG12D lesions, secondary Bap1 alterations, and human MPM-like gene expression profiles. Moreover, they are transplantable and actionable by KRAS inhibition. Our results indicate that KRAS alterations alone or in accomplice with TP53 alterations likely play an important and underestimated role in a proportion of patients with MPM, which warrants further exploration.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mesotelioma/genética , Mesotelioma/patología , Mesotelioma Maligno/genética , Mesotelioma Maligno/patología , Ratones , Neoplasias Pleurales/genética , Neoplasias Pleurales/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
6.
Sci Rep ; 11(1): 14788, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285268

RESUMEN

The aim of the present study was to investigate combined effects of cold atmospheric plasma (CAP) and the chemotherapeutic drug doxorubicin (DOX) on murine and human melanoma cells, and normal cells. In addition to free drug, the combination of CAP with a liposomal drug (DOX-LIP) was also studied for the first time. Thiazolyl blue tetrazolium bromide (MTT) and Trypan Blue exclusion assays were used to evaluate cell viability; the mechanism of cell death was evaluated by flow cytometry. Combined treatment effects on the clonogenic capability of melanoma cells, was also tested with soft agar colony formation assay. Furthermore the effect of CAP on the cellular uptake of DOX or DOX-LIP was examined. Results showed a strong synergistic effect of CAP and DOX or DOX-LIP on selectively decreasing cell viability of melanoma cells. CAP accelerated the apoptotic effect of DOX (or DOX-LIP) and dramatically reduced the aggressiveness of melanoma cells, as the combination treatment significantly decreased their anchorage independent growth. Moreover, CAP did not result in increased cellular uptake of DOX under the present experimental conditions. In conclusion, CAP facilitates DOX cytotoxic effects on melanoma cells, and affects their metastatic potential by reducing their clonogenicity, as shown for the first time.


Asunto(s)
Doxorrubicina/farmacología , Melanoma/tratamiento farmacológico , Gases em Plasma/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Sinergismo Farmacológico , Humanos , Ratones , Polietilenglicoles/farmacología
7.
Pharmaceutics ; 12(4)2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268585

RESUMEN

Arsonoliposomes (ARSL) are liposomes that incorporate arsonolipids (ARS) in their membranes. They have demonstrated significant toxicity towards cancer cells, while being less toxic towards normal cells. In this study, we sought to investigate the possibility to prepare novel types of arsonoliposomes (ARSL) by incorporating a lipidic derivative of curcumin (TREG) in their membrane, and/or by loading the vesicles with doxorubicin (DOX). The final aim of our studies is to develop novel types of ARSL with improved pharmacokinetics/targeting potential and anticancer activity. TREG was incorporated in ARSL and their integrity during incubation in buffer and serum proteins was studied by monitoring calcein latency. After evaluation of TREG-ARSL stability, the potential to load DOX into ARSL and TREG-ARSL, using the active loading protocol, was studied. Loading was performed at two temperatures (40 °C and 60 °C) and different time periods of co-incubation (of empty vesicles with DOX). Calculation of DOX entrapment efficiency (%) was based on initial and final drug/lipid ratios. The cytotoxic activity of DOX-ARSL was tested towards B16F10 cells (mouse melanoma cells), LLC (Lewis Lung carcinoma cells), and HEK-293 (Human embryonic kidney cells). Results show that TREG-ARSL have slightly larger size but similar surface charge with ARSL and that they are both highly stable during storage at 4 °C for 56 d. Interestingly, the inclusion of TREG in ARSL conferred increased stability to the vesicles towards disruptive effects of serum proteins. The active-loading protocol succeeded to encapsulate high amounts of DOX into ARSL as well as TREG-LIP and TREG-ARSL, while the release profile of DOX from the novel liposome types was similar to that demonstrated by DOX-LIP. The cytotoxicity study results are particularly encouraging, since DOX-ARSL were less toxic towards the (normal) HEK cells compared to the two cancer cell-types. Furthermore, DOX-ARSL demonstrated lower toxicities (at all concentrations tested) for HEK cells, compared to that of the corresponding mixtures of free DOX and empty ARSL, while the opposite was true for the cancer cells (in most cases). The current results justify further in vivo exploitation of DOX-ARSL, as well as TREGARSL as anticancer therapeutic systems.

8.
Eur J Pharm Sci ; 123: 162-172, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30041027

RESUMEN

Multifunctional magnetoliposomes (MLs) with active and magnetic targeting potential are evaluated as platform systems for drug targeting applications. USPIO-encapsulating MLs are prepared by freeze drying/extrusion, decorated with one or two ligands for brain or cancer targeting (t-MLs), and actively loaded with Doxorubicin (DOX). MLs have mean diameters between 117 and 171 nm. Ligand attachment yields and DOX-loading efficiency are sufficiently high, 78-95% and 89-92%, respectively, while DOX loading and retention is not affected by co-entrapment of USPIOs, and USPIO loading/retention is not modulated by DOX. Attachment of ligands, also does not affect DOX or USPIO loading. Interestingly, MLs have high magnetophoretic mobility (MM) compared to free USPIOs, which is not affected by surface coating with PEG (up to 8 mol%), but is slightly reduced by Chol incorporation in their membrane, or when functional groups are immobilized on their surface. ML size, (directly related to number of USPIOs entrapped per vesicle), is the most important MM-determining factor. MM increases by 570% when ML size increases from 69 to 348 nm. Targeting potential of t-MLs is verified by enhanced: (i) transport across a cellular model of the blood-brain-barrier, and (ii) anti-proliferative effect towards B16 melanoma cells. The potential of further enhancing t-ML targeting magnetically is verified by additional enhancements of (i) and (ii), when experiments are performed under a permanent magnetic field.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Dextranos/química , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Liposomas , Nanopartículas de Magnetita/química , Imanes , Animales , Liposomas/química , Melanoma Experimental/tratamiento farmacológico , Ratones
9.
Nat Commun ; 8: 15205, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28508873

RESUMEN

Malignant pleural effusion (MPE) is the lethal consequence of various human cancers metastatic to the pleural cavity. However, the mechanisms responsible for the development of MPE are still obscure. Here we show that mutant KRAS is important for MPE induction in mice. Pleural disseminated, mutant KRAS bearing tumour cells upregulate and systemically release chemokine ligand 2 (CCL2) into the bloodstream to mobilize myeloid cells from the host bone marrow to the pleural space via the spleen. These cells promote MPE formation, as indicated by splenectomy and splenocyte restoration experiments. In addition, KRAS mutations are frequently detected in human MPE and cell lines isolated thereof, but are often lost during automated analyses, as indicated by manual versus automated examination of Sanger sequencing traces. Finally, the novel KRAS inhibitor deltarasin and a monoclonal antibody directed against CCL2 are equally effective against an experimental mouse model of MPE, a result that holds promise for future efficient therapies against the human condition.


Asunto(s)
Adenocarcinoma/genética , Antineoplásicos/farmacología , Neoplasias Pulmonares/genética , Células Mieloides/patología , Derrame Pleural Maligno/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Antineoplásicos/uso terapéutico , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Línea Celular Tumoral , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/metabolismo , Pollos , Membrana Corioalantoides , Femenino , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Cavidad Pleural/citología , Cavidad Pleural/patología , Derrame Pleural Maligno/tratamiento farmacológico , Derrame Pleural Maligno/patología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Interferente Pequeño/metabolismo , Bazo/citología , Bazo/patología , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Curr Top Med Chem ; 15(22): 2267-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26043735

RESUMEN

Three different amyloid targeting ligands, previously shown to exhibit amyloid specific properties, have been used to develop amyloid -targeted nanoliposomes (AT-NLs. For this a MAb against Aß-peptides (Aß-MAb (immobilized on NLs at 0.015 and 0.05 mol %, and two different curcumin-lipid derivatives were attached to the surface of preformed NLs or incorporated in NL membranes during their formation. Following physicochemical characterization, these AT-NLs were studied for their ability to inhibit or delay amyloid peptide aggregation -using the thioflavin-T assay, and for their potential to reverse amyloid-induced (and Zn, or, amyloid + Zn cytotoxicity, on wild type (N2aWT and transformed (N2aAPP neuroblastoma cells, applying the MTT assay. Experimental results reveal that all formulations were found to strongly delay amyloid peptide aggregation (with no significant differences between the different AT-NL types. However, although Aß-MAb-NLs significantly reversed amyloid-induced cytotoxicity in all cases, both curcumin-NL types did not reverse Zn-induced, nor Zn+Aß-induced cytotoxicity in N2aWT cells, suggesting lower activity against synthetic-Aß peptides (compared to endogenous Aß peptides; perhaps due to different affinity towards different (aggregation stages of peptide species (monomers, oligomers, fibrils, etc. Taken into account that the aggregation stage of amyloid species is an important determinant of their toxicity, the importance of the affinity of each AT-NL type towards specific species, is highlighted.


Asunto(s)
Amiloide/metabolismo , Liposomas/química , Liposomas/farmacología , Nanopartículas/química , Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/toxicidad , Animales , Anticuerpos Monoclonales/química , Línea Celular Tumoral/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Curcumina/administración & dosificación , Curcumina/química , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ligandos , Liposomas/administración & dosificación , Ratones , Nanopartículas/administración & dosificación , Pruebas de Toxicidad/métodos
11.
Eur J Med Chem ; 85: 43-50, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25072875

RESUMEN

Nanoliposomes decorated on their surface with ligands for Aß-peptides, the key morphological features of Alzheimer's disease (AD), have been synthesized and characterized for their ability to target Aß-peptide aggregates. A tricyclic benzopyrane-glycofused structure has been exploited as Aß-peptide ligand, which was linked to liposomes via a copper-free, chemoselective, biocompatible click chemistry reaction. The tricyclic-decorated liposomes presented a mean diameter in the nanomolar range (150-200 nm), a negative z-potential and a good stability, at least up to one month. Integrity studies performed in the presence of serum proteins indicated that these decorated nanoliposomes fulfill the requirements for in vivo applications. NMR experiments carried out with Aß1-42 oligomers using both surface functionalized and plain (control) liposomes, revealed that the binding ability of the nanoliposomes was mediated by the presence of the tricyclic ligand on their surface. Finally ThT assay carried out with tricyclic-decorated liposomes showed significant decrease in thioflavine T fluorescence after 24 h, suggesting a significant inhibition/delay of Aß1-42 aggregation.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Benzopiranos/metabolismo , Benzopiranos/farmacología , Nanopartículas , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Multimerización de Proteína/efectos de los fármacos , Benzopiranos/administración & dosificación , Benzopiranos/química , Química Clic , Glicosilación , Ligandos , Liposomas , Unión Proteica , Estructura Secundaria de Proteína , Estereoisomerismo , Propiedades de Superficie
12.
Virology ; 405(1): 225-33, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20591460

RESUMEN

In the absence of an effective vaccine against HIV, it is urgent to develop an effective alternative such as a microbicide. Single and repeated applications of MC1220 microbicide were evaluated in macaques. First, animals were given a single application of 0.5% or 1.5% MC1220-containing liposomal gel. A second group were treated with 0.5% MC1220 once a day for 4 days. The control groups were treated by liposomal gel alone. Thirty minutes after the last application, animals were challenged with RT-SHIV. In the first protocol, 2 of 4 animals treated by 0.5% of the MC1220 and 2 of 5 treated by 1.5% were protected. In the second protocol, 3 of 5 treated animals were protected and 5 of 5 controls were infected. The RNA viral load at necropsy was significantly lower (p=0.05) in treated-infected animals than in controls. In both protocols, the number of CD4+ T cells was lower at viremia peak in infected than in protected animals.


Asunto(s)
VIH/efectos de los fármacos , Pirimidinonas/uso terapéutico , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Animales , Anticuerpos Antivirales/sangre , Femenino , Fluorobencenos , Geles , VIH/genética , Liposomas , Macaca mulatta , Pirimidinonas/efectos adversos , Virus Reordenados , Inhibidores de la Transcriptasa Inversa/efectos adversos , Virus de la Inmunodeficiencia de los Simios/genética , Carga Viral
13.
Methods Mol Biol ; 605: 147-62, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20072879

RESUMEN

Arsonoliposomes (ARSL) which are liposomes that contain arsonolipids in their membranes have shown interesting anticancer and antiparasitic activity in vitro. Their lipid composition (the specific arsonolipids and/or phospholipids used for their preparation, and the relative amounts of each lipid type) highly influences their physicochemical properties as well as their in vivo kinetics and antiparasitic activity; however, their cytotoxicity towards cancer cells is minimally--if at all--modified. ARSL are prepared by a modification of the "one step" method followed or not by sonication (for formation of sonicated or non-sonicated ARSL, respectively). Arsonoliposomes may be composed only of arsonolipids (containing or not cholesterol) [plain ARSL], or they may contain mixtures of arsonolipids with phospholipids (with or without Chol) [mixed ARSL]. Herein, we describe in detail the preparation and physicochemical characterization of ARSL.


Asunto(s)
Antineoplásicos/química , Antiparasitarios/química , Arsénico/química , Lípidos/química , Liposomas/química , Estructura Molecular
14.
Pharm Res ; 26(10): 2237-46, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19626426

RESUMEN

PURPOSE: To investigate the arsonoliposome effect on medulloblastoma cells (VC312Rs) related to uptake, endocytotic mechanism and cell viability. METHODS: VC312R viability in presence of either arsonoliposomes or stealth liposomes was studied using MTT assay for 1-4 days. Fibroblasts (3T3) were used as control. Apoptosis was studied for 2 h, 5 h and 24 h. Bodipy-labelled arsonoliposome uptake (time- and dose-dependent) was estimated using FACS analysis. The endocytotic mechanism was investigated using inhibitors of clathrin- (chlorpromazine) and caveolae-mediated endocytosis (filipin). RESULTS: Arsonoliposomes affected significantly the VC312R viability compared to 3T3 cells and induced apoptosis to VC312Rs after 2 h of incubation. Apoptosis was not observed for 3T3 cells. Liposome uptake versus time showed a bimodal pattern. Clathrin-mediated endocytosis was the main endocytotic mechanism at low lipid concentrations and caveolae at higher ones; thus, dose-dependent uptake did not show a plateau at increased lipid concentrations. CONCLUSIONS: Arsonoliposomes showed "selective" toxicity towards medulloblastoma cells inducing apoptosis after 2 hs of incubation. Therefore, arsonoliposomes are promising anticancer vehicles for brain tumour treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Arsenicales/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Meduloblastoma/tratamiento farmacológico , Células 3T3 , Animales , Antineoplásicos/farmacocinética , Arsenicales/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Endocitosis/fisiología , Liposomas , Meduloblastoma/metabolismo , Ratones , Resultado del Tratamiento
15.
Mol Nutr Food Res ; 53(5): 592-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18727012

RESUMEN

Sonicated arsonoliposomes were prepared using arsonolipid with palmitic acid acyl chain (C16), mixed with phosphatidylcholine (PC)-based or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-based, and cholesterol (Chol) with C16/DSPC/Chol 8:12:10 molar ratio. PEG-lipid (1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated to polyethylenoglycol 2000) containing vesicles (PEGylated-arsonoliposomes; PC-based and DSPC-based) were also prepared. The cytotoxicity of these arsonoliposomes towards different cancer cells (human promyelocytic leukaemia NB4, Prostatic cancer PC3, human breast adenocarcinoma MDA-MB-468, human T-lymphocyte (MT-4) and also towards human umbilical vein endothelial cells (HUVECs) was evaluated by calculating the arsonoliposome-induced growth inhibition of the cells by the MTT assay. IC-50 values were interpolated from cell number/arsonoliposome concentration curves. The results reveal that all types of arsonoliposomes evaluated significantly inhibit the growth of most of the cancer cells studied (PC3, NB4, MT4) with the exception of the MDA-MB-468 breast cancer cells which were minimally affected by arsonoliposomes; in some cases even less than HUVEC. Nevertheless, for the same cell type the differences between the different types of arsonoliposomes were significant but not proportional to their stability, indicating that the formation of arsonoliposomes with very stable membranes is not a problem for their anticancer activity. Thereby it is concluded that arsonoliposome composition should be adjusted in accordance to their in vivo kinetics and the desired, for each specific application, biodistribution of As and/or encapsulated drug.


Asunto(s)
Antineoplásicos/farmacología , Arsenicales/farmacología , Lípidos/análisis , Liposomas/farmacología , Arsenicales/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Liposomas/química
16.
J Nanosci Nanotechnol ; 6(9-10): 2618-37, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17048471

RESUMEN

Natural and synthetic arsenolipids, have been discovered, synthesized, and evaluated for their biological activity. Arsonolipids, are analogs of phosphonolipids, in which P has been replaced by As. The synthesis of arsonolipids has been explored and a simple one-pot method with high yield is currently available for their preparation. However, although arsonolipids posses interesting biophysical and biochemical properties their anticancer or antiparasitic activity is not considered adequate for therapeutic applications. But when arsonolipids are incorporated in liposomes, the vesicles formulated have interesting possibilities, as seen in a number of studies. In cell culture studies, nanosized arsonolipid-containing liposomes or else arsonoliposomes, showed increased toxicity against cancer cells (compared to that of arsenic trioxide) but at the same time were less toxic than arsenic trioxide for normal cells. Furthermore, arsonoliposomes also demonstrate antiparasitic activity in vitro. Nevertheless, As is rapidly cleared from blood after in vivo administration of arsonoliposomes, and this will highly limit possible therapeutic applications. In addition, the fact that arsonoliposomes were observed to aggregate and subsequently fuse into larger particles in presence of cations, may also be considered as a problem. Thereby, methods to modulate the stability of arsonoliposomes and, perhaps, their in vivo distribution (as surface property modification) are currently being investigated. In very recent experiments it has been shown that arsonoliposome pegylation results in the formation of liposomes with very high membrane integrity. In addition, pegylation results in increased physical stability of arsonoliposomes and abolishment of cation-induced aggregation and fusion. Nevertheless, further in vivo studies are required in order to prove if pegylation alters arsonoliposome in vivo kinetics in a positive way, without affecting their activity. From studies performed thus far it is concluded that arsonoliposomes are nanosized-vesicles with interesting properties that justify further exploitation towards the development of therapeutic systems for cancer or parasitic diseases.


Asunto(s)
Arsénico/administración & dosificación , Arsénico/química , Materiales Biocompatibles Revestidos/química , Cristalización/métodos , Portadores de Fármacos/química , Liposomas/química , Nanoestructuras/química , Sistemas de Liberación de Medicamentos/métodos , Electroquímica/métodos , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Rotación
17.
J Nanosci Nanotechnol ; 6(9-10): 2974-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17048506

RESUMEN

Increased toxicity of arsonoliposomes towards cancer cells may be attributed to interaction between arsonolipids and cellular thiols which, would result in reduction of As(V) to the more toxic As(Ill). Cancer cells with high thiol contents may thus be more sensitive to arsonoliposomes, providing that the arsonolipid molecules that are incorporated in the liposome membrane can interact with thiol-containing compounds. For examination of this possibility we investigate the effect of incubating various compositions of arsonoliposomes with glutathione, on their integrity. If glutathione does interact with the As(V) of the arsonolipid headgroup, this should result in an alteration of the arsonoliposome membrane stability. We followed arsonoliposome integrity by measuring the release of vesicle-encapsulated calcein from arsonoliposomes with different lipid compositions, during incubation in glutathione. The results of this study show that the effect of glutathione on arsonoliposome integrity is higher (arsonoliposomes are less stable) when the arsonolipid content of their membranes increases. This indicates that arsonolipid molecules interact with glutathione, and in some cases, depending on the rigidity of their membranes; this interaction leads to a (higher or lower) destabilization of arsonoliposomes. The destabilizing effect of glutathione was higher for arsonoliposomes that were previously found to be less stable during incubation in serum proteins or, in other words, have lower membrane rigidity. In the case of pegylated-arsonoliposomes membrane destabilization was minimal and this may be related to the high stability demonstrated previously for these specific arsonoliposomes, or, it may indicate that pegylation results in prevention (total or partial) of arsonolipid-As interaction with thiols (perhaps because of steric repulsion).


Asunto(s)
Fluoresceínas/química , Glutatión/química , Liposomas/química , Fosfolípidos/química , Polietilenglicoles/química , Sonicación , Compuestos de Sulfhidrilo/química , Difusión , Ensayo de Materiales , Fluidez de la Membrana
18.
Int J Pharm ; 289(1-2): 151-8, 2005 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-15652207

RESUMEN

We recently showed that arsonoliposomes (novel arsenic containg liposomes) demonstrate differential toxicity towards various types of cancer and normal cells, in cell culture studies, as well as anti-parasitic activity. In this study, the in-vivo distribution of the active moiety of these vesicles, As, is evaluated. Sonicated arsonoliposomes were prepared using the arsonolipid with palmitic acid acyl chain (C16) mixed with egg-phosphatidyl choline (PC) and cholesterol (Chol) [C16/PC/Chol at 8:12:10 mol/mol/mol]. A dose of arsonoliposomes, corresponding to 5 mg arsenate/kg was administered by intraperitoneal injection in balb-c mice. At various time points post-injection the mice were sacrificed and the distribution of As in the organs was measured, by atomic absorption spectroscopy. Results demonstrate that a high portion of the dose administered is rapidly excreted; since 1-h post-injection only about 30% of the dose administered was detected cumulatively in the animal tissues. After this the elimination of arsenic was a slow process with a total body elimination rate constant of 0.023 h(-1), corresponding to a half-life of 30 h. Tissues with the highest arsenic concentration during the study period are: spleen-kidneys-stomach, followed by lung, liver, intestines-heart, carcass+skin and finally blood. No acute toxicity, or effect on the body or organ weight of the mice was observed.


Asunto(s)
Arsenicales/administración & dosificación , Inyecciones Intraperitoneales , Distribución Tisular/efectos de los fármacos , Animales , Arsenicales/metabolismo , Arsenicales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Liposomas , Ratones , Ratones Endogámicos BALB C , Factores de Tiempo
19.
J Liposome Res ; 15(3-4): 187-97, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16393910

RESUMEN

The influence of the lipid composition of arsonoliposomes on their membrane integrity was investigated to evaluate whether it is possible to combine their action with drugs that can be encapsulated in their aqueous interior. This was investigated by measuring the retention of vesicle-encapsulated calcein (100 mM) during incubation, in the absence and presence of serum proteins. Liposomes containing various concentrations of arsonolipid (with the palmitoyl side chain) as well as egg-lecithin (phosphatidylcholine, PC) and cholesterol (lipid/chol 2:1 mol:mol) were prepared. In some experiments, PC was replaced by the synthetic phospholipid DSPC. All PC/arsonoliposomes tested are stable after 24 h of incubation in buffer at 37 degrees C. After incubation in the presence of serum proteins, arsonoliposomes that contain low amounts of arsonolipid (up to 5 mol% of the lipid content without cholesterol) are stable, whereas increased release of calcein is observed when vesicle arsonolipid concentration is raised (from 5 to 15 mol%). Further increase of arsonolipid content results in immediate decrease of calcein latency while the remaining calcein is rapidly released during incubation. DSPC/arsonoliposomes are comparably more stable, and membrane integrity is independent of the vesicle arsonolipid content, in the range investigated (15-40 mol% of the lipid content without cholesterol). Thereby, we conclude that more stable arsonoliposomes that incorporate high arsonolipid concentrations may be produced when PC is replaced by DSPC. The latter arsonoliposomes provide a system that may be used for combining arsonolipid activity with the activity of other drugs.


Asunto(s)
Arsenicales/química , Lípidos/química , Liposomas/química , Óxidos/química , Animales , Antineoplásicos/química , Trióxido de Arsénico , Bovinos , Microscopía por Crioelectrón , Composición de Medicamentos , Fluoresceínas/química , Colorantes Fluorescentes/química
20.
J Liposome Res ; 14(1-2): 27-38, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15461930

RESUMEN

The use of arsenic-containing compounds in cancer therapy is currently being re-considered, after the recent approval of arsenic trioxide (Trisenox) for the treatment of relapsed promyelocytic leukemia (PML). In an attempt to prepare a carrier system to minimize the toxicity of this drug, the aim of this study is to prepare and characterize liposomes encapsulating arsenic trioxide (ATO). For this, we prepared different types of liposomes entrapping ATO: large multilamellar (MLV), sonicated (SUV) and dried reconstituted vesicles (DRV). The techniques used were: thin film hydration, sonication and the DRV method, respectively. Two lipid compositions were studied for each liposome type, EggPC/Chol (1:1) and DSPC/Chol (1:1). After liposome preparation, drug encapsulation was evaluated by measuring arsenic in liposomes. For this, energy-dispersive X-ray fluorescence spectroscopy or atomic absorption was used. In addition, the retention of the drug in the liposomes was evaluated after incubating the liposomes in buffer at 37 degrees C. The experimental results reveal that encapsulation of ATO in liposomes ranges between 0.003 and 0.506 mol/ mol of lipid, and is highest in the DRV vesicles and lowest in the small unilamellar vesicles, as anticipated. Considering the in vitro stability of ATO-encapsulating liposomes: 1) For the PC/Chol liposomes (DRV and MLV), after 24 hours of incubation, more than 70% (or 90% in some cases) of the initially encapsulated amount of ATO was released. 2) The liposomes composed of DSPC/Chol could retain substantially higher amounts of ATO, especially the DRV liposomes (54% retained after 24 h). 3) In the case of PC/Chol, temperature of incubation has no effect on the ATO release after 24 hours, but affects the rate of ATO release in the MLV liposomes, while for the DSPC/Chol liposomes there is a slight increase (statistically insignificant) of ATO release at higher temperature.


Asunto(s)
Arsenicales/uso terapéutico , Sistemas de Liberación de Medicamentos , Liposomas , Óxidos/uso terapéutico , Trióxido de Arsénico , Cápsulas , Química Farmacéutica , Portadores de Fármacos , Estabilidad de Medicamentos , Cinética , Lípidos/química , Sonicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA