Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Med Chem ; 67(8): 6081-6098, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38401050

RESUMEN

In this work, we investigated the anticancer activity of several novel silver(I) 2,2'-bipyridine complexes containing either triphenylphosphane (PPh3) or 1,2-bis(diphenylphosphino)ethane (dppe) ligands. All compounds were characterized by diverse analytical methods including ESI-MS spectrometry; NMR, UV-vis, and FTIR spectroscopies; and elemental analysis. Moreover, several compounds were also studied by X-ray single-crystal diffraction. Subsequently, the compounds were investigated for their anticancer activity against drug-resistant and -sensitive cancer cells. Noteworthily, neither carboplatin and oxaliplatin resistance nor p53 deletion impacted on their anticancer efficacy. MES-OV cells displayed exceptional hypersensitivity to the dppe-containing drugs. This effect was not based on thioredoxin reductase inhibition, enhanced drug uptake, or apoptosis induction. In contrast, dppe silver drugs induced paraptosis, a novel recently described form of programmed cell death. Together with the good tumor specificity of this compound's class, this work suggests that dppe-containing silver complexes could be interesting drug candidates for the treatment of resistant ovarian cancer.


Asunto(s)
2,2'-Dipiridil , Antineoplásicos , Fosfinas , Plata , Humanos , Fosfinas/química , Fosfinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Plata/química , Plata/farmacología , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacología , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Apoptosis/efectos de los fármacos , Cristalografía por Rayos X , Ligandos , Muerte Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Resistencia a Antineoplásicos/efectos de los fármacos
2.
J Inorg Biochem ; 251: 112436, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38016328

RESUMEN

The successful choice of hit compounds during drug development programs involves the integration of structure-activity relationship (SAR) studies with pharmacokinetic determinations, including metabolic stability assays and metabolite profiling. A panel of nine ruthenium-cyclopentadienyl (RuCp) compounds with the general formula [Ru(η5-C5H4R)(PPh3)(bipyR')]+ (with R = H, CHO, CH2OH; R' = H, CH3, CH2OH, CH2Biotin) has been tested against hormone-dependent MCF-7 and triple negative MDA-MB-231 breast cancer cells. In general, all compounds showed important cytotoxicity against both cancer cell lines and were able to inhibit the formation of MDA-MB-231 colonies in a dose-dependent manner, while showing selectivity for cancer cells over normal fibroblasts. Among them, four compounds stood out as lead structures to be further studied. Cell distribution assays revealed their preference for the accumulation at cell membrane (Ru quantification by ICP-MS) and the mechanism of cell death seemed to be mediated by apoptosis. Potential structural liabilities of lead compounds were subsequently flagged upon in vitro metabolic stability assays and metabolite profiling. The implementation of this integrated strategy led to the selection of RT151 as a promising hit compound.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Complejos de Coordinación , Rutenio , Humanos , Femenino , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Rutenio/química , Compuestos de Rutenio/farmacología , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Complejos de Coordinación/química
3.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37259297

RESUMEN

For the first time, the pharmacokinetic (PK) profile of tryptophanol-derived isoindolinones, previously reported as p53 activators, was investigated. From the metabolites' identification, performed by liquid chromatography coupled to high resolution tandem mass spectrometry (LC-HRMS/MS), followed by their preparation and structural elucidation, it was possible to identify that the indole C2 and C3 are the main target of the cytochrome P450 (CYP)-promoted oxidative metabolism in the tryptophanol-derived isoindolinone scaffold. Based on these findings, to search for novel p53 activators a series of 16 enantiopure tryptophanol-derived isoindolinones substituted with a bromine in indole C2 was prepared, in yields of 62-89%, and their antiproliferative activity evaluated in human colon adenocarcinoma HCT116 cell lines with and without p53. Structural optimization led to the identification of two (S)-tryptophanol-derived isoindolinones 3.9-fold and 1.9-fold more active than hit SLMP53-1, respectively. Compounds' metabolic stability evaluation revealed that this substitution led to a metabolic switch, with the impact of Phase I oxidative metabolism being minimized. Through differential scanning fluorimetry (DSF) experiments, the most active compound of the series in cell assays led to an increase in the protein melting temperature (Tm) of 10.39 °C, suggesting an effective binding to wild-type p53 core domain.

4.
Pharmaceutics ; 15(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376178

RESUMEN

Colorectal cancer (CRC) is among the most deadly cancers worldwide. Current therapeutic strategies have low success rates and several side effects. This relevant clinical problem requires the discovery of new and more effective therapeutic alternatives. Ruthenium drugs have arisen as one of the most promising metallodrugs, due to their high selectivity to cancer cells. In this work we studied, for the first time, the anticancer properties and mechanisms of action of four lead Ru-cyclopentadienyl compounds, namely PMC79, PMC78, LCR134 and LCR220, in two CRC-derived cell lines (SW480 and RKO). Biological assays were performed on these CRC cell lines to evaluate cellular distribution, colony formation, cell cycle, proliferation, apoptosis, and motility, as well as cytoskeleton and mitochondrial alterations. Our results show that all the compounds displayed high bioactivity and selectivity, as shown by low half-maximal inhibitory concentrations (IC50) against CRC cells. We observed that all the Ru compounds have different intracellular distributions. In addition, they inhibit to a high extent the proliferation of CRC cells by decreasing clonogenic ability and inducing cell cycle arrest. PMC79, LCR134, and LCR220 also induce apoptosis, increase the levels of reactive oxygen species, lead to mitochondrial dysfunction, induce actin cytoskeleton alterations, and inhibit cellular motility. A proteomic study revealed that these compounds cause modifications in several cellular proteins associated with the phenotypic alterations observed. Overall, we demonstrate that Ru compounds, especially PMC79 and LCR220, display promising anticancer activity in CRC cells with a high potential to be used as new metallodrugs for CRC therapy.

5.
Food Chem Toxicol ; 166: 113251, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35750087

RESUMEN

Acrylamide and furan are environmental and food contaminants that are metabolized by cytochrome P450 2E1 (CYP2E1), giving rise to glycidamide and cis-2-butene-1,4-dial (BDA) metabolites, respectively. Both glycidamide and BDA are electrophilic species that react with nucleophilic groups, being able to introduce mutations in DNA and perform epigenetic remodeling. However, whereas these carcinogens are primarily metabolized in the liver, the carcinogenic potential of acrylamide and furan in this organ is still controversial, based on findings from experimental animal studies. With the ultimate goal of providing further insights into this issue, we explored in vitro, using a hepatocyte cell line and a hepatocellular carcinoma cell line, the putative effect of these metabolites as carcinogens and cancer promoters. Molecular alterations were investigated in cells that survive glycidamide and BDA toxicity. We observed that those cells express CD133 stemness marker, present a high proliferative capacity and display an adjusted expression profile of genes encoding enzymes involved in oxidative stress control, such as GCL-C, GSTP1, GSTA3 and CAT. These molecular changes seem to be underlined, at least in part, by epigenetic remodeling involving histone deacetylases (HDACs). Although more studies are needed, here we present more insights towards the carcinogenic capacity of glycidamide and BDA and also point out their effect in favoring hepatocellular carcinoma progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Acrilamida , Aldehídos , Animales , Carcinogénesis , Carcinógenos/metabolismo , Carcinógenos/toxicidad , Compuestos Epoxi , Furanos/toxicidad
6.
Molecules ; 27(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35209204

RESUMEN

In this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors. This view might translate into novel perspectives on the mechanisms of kidney function and blood pressure regulation and on clinical implications of the cysteine-related thiolome as a tool in precision medicine.


Asunto(s)
Cisteína/metabolismo , Riñón/metabolismo , Medicina de Precisión , Encéfalo/metabolismo , Humanos , Hígado/metabolismo , Especificidad de Órganos
7.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34573023

RESUMEN

The 'gasotransmitters' hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO) act as second messengers in human physiology, mediating signal transduction via interaction with or chemical modification of protein targets, thereby regulating processes such as neurotransmission, blood flow, immunomodulation, or energy metabolism. Due to their broad reactivity and potential toxicity, the biosynthesis and breakdown of H2S, NO, and CO are tightly regulated. Growing evidence highlights the active role of gasotransmitters in their mutual cross-regulation. In human physiology, the transsulfuration enzymes cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE) are prominent H2S enzymatic sources. While CBS is known to be inhibited by NO and CO, little is known about CSE regulation by gasotransmitters. Herein, we investigated the effect of s-nitrosation on CSE catalytic activity. H2S production by recombinant human CSE was found to be inhibited by the physiological nitrosating agent s-nitrosoglutathione (GSNO), while reduced glutathione had no effect. GSNO-induced inhibition was partially reverted by ascorbate and accompanied by the disappearance of one solvent accessible protein thiol. By combining differential derivatization procedures and mass spectrometry-based analysis with functional assays, seven out of the ten protein cysteine residues, namely Cys84, Cys109, Cys137, Cys172, Cys229, Cys307, and Cys310, were identified as targets of s-nitrosation. By generating conservative Cys-to-Ser variants of the identified s-nitrosated cysteines, Cys137 was identified as most significantly contributing to the GSNO-mediated CSE inhibition. These results highlight a new mechanism of crosstalk between gasotransmitters.

8.
Adv Exp Med Biol ; 1306: 109-120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959909

RESUMEN

Our general goal was to non-invasively evaluate kidney tubular dysfunction. We developed a strategy based on cysteine (Cys) disulfide stress mechanism that underlies kidney dysfunction. There is scarce information regarding the fate of Cys-disulfides (CysSSX), but evidence shows they might be detoxified in proximal tubular cells by the action of N-acetyltransferase 8 (NAT8). This enzyme promotes the addition of an N-acetyl moiety to cysteine-S-conjugates, forming mercapturates that are eliminated in urine. Therefore, we developed a strategy to quantify mercapturates of CysSSX in urine as surrogate of disulfide stress and NAT8 activity in kidney tubular cells. We use a reduction agent for the selective reduction of disulfide bonds. The obtained N-acetylcysteine moiety of the mercapturates from cysteine disulfides was monitored by fluorescence detection. The method was applied to urine from mice and rat as well as individuals with healthy kidney and kidney disease.


Asunto(s)
Cisteína , Enfermedades Renales , Acetilcisteína , Animales , Disulfuros , Riñón , Ratones , Ratas
9.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801507

RESUMEN

Gastric cancer is one of the deadliest cancers in modern societies, so there is a high level of interest in discovering new drugs for this malignancy. Previously, we demonstrated the ability of tryptophanol-derived polycyclic compounds to activate the tumor suppressor protein p53, a relevant therapeutic target in cancer. In this work, we developed a novel series of enantiomerically pure tryptophanol-derived small molecules to target human gastric adenocarcinoma (AGS) cells. From an initial screening of fourteen compounds in AGS cell line, a hit compound was selected for optimization, leading to two derivatives selective for AGS gastric cells over other types of cancer cells (MDA-MB-231, A-549, DU-145, and MG-63). More importantly, the compounds were non-toxic in normal cells (HEK 293T). Additionally, we show that the growth inhibition of AGS cells induced by these compounds is mediated by apoptosis. Stability studies in human plasma and human liver microsomes indicate that the compounds are stable, and that the major metabolic transformations of these molecules are mono- and di-hydroxylation of the indole ring.

10.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503263

RESUMEN

The need for competent in vitro liver models for toxicological assessment persists. The differentiation of stem cells into hepatocyte-like cells (HLC) has been adopted due to its human origin and availability. Our aim was to study the usefulness of an in vitro 3D model of mesenchymal stem cell-derived HLCs. 3D spheroids (3D-HLC) or monolayer (2D-HLC) cultures of HLCs were treated with the hepatotoxic drug nevirapine (NVP) for 3 and 10 days followed by analyses of Phase I and II metabolites, biotransformation enzymes and drug transporters involved in NVP disposition. To ascertain the toxic effects of NVP and its major metabolites, the changes in the glutathione net flux were also investigated. Phase I enzymes were induced in both systems yielding all known correspondent NVP metabolites. However, 3D-HLCs showed higher biocompetence in producing Phase II NVP metabolites and upregulating Phase II enzymes and MRP7. Accordingly, NVP-exposure led to decreased glutathione availability and alterations in the intracellular dynamics disfavoring free reduced glutathione and glutathionylated protein pools. Overall, these results demonstrate the adequacy of the 3D-HLC model for studying the bioactivation/metabolism of NVP representing a further step to unveil toxicity mechanisms associated with glutathione net flux changes.


Asunto(s)
Biotransformación , Glutatión/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Nevirapina/farmacocinética , Diferenciación Celular , Línea Celular , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Células Madre Mesenquimatosas/citología , Solventes , Esferoides Celulares , Cordón Umbilical/citología , Xenobióticos/farmacología
11.
Nutrients ; 11(10)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635026

RESUMEN

Ovarian cancer is the main cause of death from gynecological cancer, with its poor prognosis mainly related to late diagnosis and chemoresistance (acquired or intrinsic) to conventional alkylating and reactive oxygen species (ROS)-generating drugs. We and others reported that the availability of cysteine and glutathione (GSH) impacts the mechanisms of resistance to carboplatin in ovarian cancer. Different players in cysteine metabolism can be crucial in chemoresistance, such as the cystine/glutamate antiporter system Xc (xCT) and the H2S-synthesizing enzyme cystathionine ß-synthase (CBS) in the pathway of cysteine catabolism. We hypothesized that, by disrupting cysteine metabolic flux, chemoresistance would be reverted. Since the xCT transporter is also able to take up selenium, we used selenium-containing chrysin (SeChry) as a plausible competitive inhibitor of xCT. For that, we tested the effects of SeChry on three different ovarian cancer cell lines (ES2, OVCAR3, and OVCAR8) and in two non-malignant cell lines (HaCaT and HK2). Results showed that, in addition to being highly cytotoxic, SeChry does not affect the uptake of cysteine, although it increases GSH depletion, indicating that SeChry might induce oxidative stress. However, enzymatic assays revealed an inhibitory effect of SeChry toward CBS, thus preventing production of the antioxidant H2S. Notably, our data showed that SeChry and folate-targeted polyurea dendrimer generation four (SeChry@PUREG4-FA) nanoparticles increased the specificity for SeChry delivery to ovarian cancer cells, reducing significantly the toxicity against non-malignant cells. Collectively, our data support SeChry@PUREG4-FA nanoparticles as a targeted strategy to improve ovarian cancer treatment, where GSH depletion and CBS inhibition underlie SeChry cytotoxicity.


Asunto(s)
Cistationina betasintasa/metabolismo , Flavonoides/uso terapéutico , Glutatión/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Polímeros/uso terapéutico , Selenio/uso terapéutico , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dendrímeros , Femenino , Flavonoides/administración & dosificación , Flavonoides/química , Humanos , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Polímeros/administración & dosificación , Polímeros/química , Selenio/administración & dosificación , Selenio/química
12.
Front Chem ; 7: 532, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417895

RESUMEN

Identification of protein covalent modifications (adducts) is a challenging task mainly due to the lack of data processing approaches for adductomics studies. Despite the huge technological advances in mass spectrometry (MS) instrumentation and bioinformatics tools for proteomics studies, these methodologies have very limited success on the identification of low abundant protein adducts. Herein we report a novel strategy inspired on the metabolomics workflows for the identification of covalently-modified peptides that consists on LC-MS data preprocessing followed by statistical analysis. The usefulness of this strategy was evaluated using experimental LC-MS data of histones isolated from HepG2 and THLE2 cells exposed to the chemical carcinogen glycidamide. LC-MS data was preprocessed using the open-source software MZmine and potential adducts were selected based on the m/z increments corresponding to glycidamide incorporation. Then, statistical analysis was applied to reveal the potential adducts as those ions are differently present in cells exposed and not exposed to glycidamide. The results were compared with the ones obtained upon the standard proteomics methodology, which relies on producing comprehensive MS/MS data by data dependent acquisition and analysis with proteomics data search engines. Our novel strategy was able to differentiate HepG2 and THLE2 and to identify adducts that were not detected by the standard methodology of adductomics. Thus, this metabolomics driven approach in adductomics will not only open new opportunities for the identification of protein epigenetic modifications, but also adducts formed by endogenous and exogenous exposure to chemical agents.

13.
High Throughput ; 8(2)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018482

RESUMEN

The mercapturate pathway is a unique metabolic circuitry that detoxifies electrophiles upon adducts formation with glutathione. Since its discovery over a century ago, most of the knowledge on the mercapturate pathway has been provided from biomonitoring studies on environmental exposure to toxicants. However, the mercapturate pathway-related metabolites that is formed in humans-the mercapturomic profile-in health and disease is yet to be established. In this paper, we put forward the hypothesis that these metabolites are key pathophysiologic factors behind the onset and development of non-communicable chronic inflammatory diseases. This review goes from the evidence in the formation of endogenous metabolites undergoing the mercapturate pathway to the methodologies for their assessment and their association with cancer and respiratory, neurologic and cardiometabolic diseases.

14.
Chem Res Toxicol ; 32(5): 869-877, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30807115

RESUMEN

Acrylamide has been classified as a "Group 2A carcinogen" (probably carcinogenic to humans) by the International Agency for Research on Cancer. The carcinogenicity of acrylamide is attributed to its well-recognized genotoxicity. In the present study, we investigated the effect of acrylamide on epigenetic alterations in mice. Female B6C3F1 mice received acrylamide in drinking water for 28 days, at doses previously used in a 2 year cancer bioassay (0, 0.0875, 0.175, 0.35, and 0.70 mM), and the genotoxic and epigenetic effects were investigated in lungs, a target organ for acrylamide carcinogenicity, and livers, a nontarget organ. Acrylamide exposure resulted in a dose-dependent formation of N7-(2-carbamoyl-2-hydroxyethyl)guanine and N3-(2-carbamoyl-2-hydroxyethyl)adenine in liver and lung DNA. In contrast, the profiles of global epigenetic alterations differed between the two tissues. In the lungs, acrylamide exposure resulted in a decrease of histone H4 lysine 20 trimethylation (H4K20me3), a common epigenetic feature of human cancer, while in the livers, there was increased acetylation of histone H3 lysine 27 (H3K27ac), a gene transcription activating mark. Treatment with 0.70 mM acrylamide also resulted in substantial alterations in the DNA methylation and whole transcriptome in the lungs and livers; however, there were substantial differences in the trends of DNA methylation and gene expression changes between the two tissues. Analysis of differentially expressed genes showed a marked up-regulation of genes and activation of the gene transcription regulation pathway in livers, but not lungs. This corresponded to increased histone H3K27ac and DNA hypomethylation in livers, in contrast to hypermethylation and transcription silencing in lungs. Our results demonstrate that acrylamide induced global epigenetic alterations independent of its genotoxic effects, suggesting that epigenetic events may determine the organ-specific carcinogenicity of acrylamide. Additionally this study provides strong support for the importance of epigenetic alterations, in addition to genotoxic events, in the mechanism of carcinogenesis induced by genotoxic chemical carcinogens.


Asunto(s)
Acrilamida/toxicidad , Aductos de ADN/metabolismo , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Mutágenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Acrilamida/administración & dosificación , Adenina/análogos & derivados , Adenina/química , Administración Oral , Animales , Carcinógenos/administración & dosificación , Carcinógenos/toxicidad , Aductos de ADN/química , Aductos de ADN/genética , Epigénesis Genética/efectos de los fármacos , Femenino , Guanina/análogos & derivados , Guanina/química , Histonas/química , Histonas/genética , Histonas/metabolismo , Metilación/efectos de los fármacos , Ratones , Mutágenos/administración & dosificación , Contaminantes Químicos del Agua/administración & dosificación
15.
Nephron ; 143(1): 17-23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625494

RESUMEN

BACKGROUND: The recent growing evidence that the proximal tubule underlies the early pathogenesis of diabetic kidney disease (DKD) is unveiling novel and promising perspectives. This pathophysiological concept links tubulointerstitial oxidative stress, inflammation, hypoxia, and fibrosis with the progression of DKD. In this new angle for DKD, the prevailing molecular mechanisms on proximal tubular cells emerge as an innovative opportunity for prevention and management of DKD as well as to improve diabetic dysmetabolism. SUMMARY: The mercapturate pathway (MAP) is a classical metabolic detoxification route for xenobiotics that is emerging as an integrative circuitry detrimental to resolve tubular inflammation caused by endogenous electrophilic species. Herein we review why and how it might underlie DKD. Key Messages: MAP is a hallmark of proximal tubular cell function, and cysteine-S-conjugates might represent targets for early intervention in DKD. Moreover, the biomonitoring of urinary mercapturates from metabolic inflammation products might be relevant for the implementation of preventive/management strategies in DKD.


Asunto(s)
Acetilcisteína/metabolismo , Nefropatías Diabéticas/metabolismo , Túbulos Renales Proximales/metabolismo , Acetiltransferasas/fisiología , Cisteína/metabolismo , Nefropatías Diabéticas/etiología , Humanos , Túbulos Renales Proximales/citología , Leucotrienos/metabolismo , Estrés Oxidativo
16.
Free Radic Biol Med ; 129: 559-568, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30342189

RESUMEN

Carbamazepine (CBZ) is one of the most widely used antiepileptic drugs by both adults and children. Despite its widespread use, CBZ is associated with central nervous system toxicity and severe hypersensitivity reactions, which raise concerns about its chronic use. While the precise mechanisms of CBZ-induced adverse events are still unclear, metabolic activation to the epoxide (CBZ-EP) has been thought to play a significant role. This work reports first-hand evidence that CBZ reacts readily with biologically relevant thiyl radicals with no need for bioactivation. Using liquid chromatography coupled with high resolution mass spectrometry, multiple products from direct reaction of CBZ with glutathione (GSH) and N-acetyl-L-cysteine (NAC) were unequivocally identified, including the same product obtained upon ring-opening of CBZ-EP. The product profile is complex and consistent with radical-mediated mechanisms. Importantly, side products and adducts compatible with this non-enzymatic pathway were identified in liver extracts from CBZ-treated Wistar rats. The reaction of CBZ with GSH and NAC is more extensive in the presence of oxygen. Taking into consideration that GSH conjugation is, in general, a detoxification pathway, these results suggest that under hyperoxia/oxidative stress conditions the bioavailability of the parent drug may be compromised. Additionally, this non-enzymatic process can be anticipated to play, at least in part, a role in the onset of CBZ-induced adverse reactions due to the concomitant generation of reactive oxygen species. Therefore, the search for causal relationships between the formation of non-enzymatically-driven CBZ products and the occurrence of CBZ-induced adverse events in human patients merits further research, aiming the translation of basic mechanistic findings into a clinical context that may ultimately lead to a safer CBZ prescription.


Asunto(s)
Acetilcisteína/química , Anticonvulsivantes/química , Carbamazepina/química , Glutatión/química , Hígado/química , Oxígeno/química , Acetilcisteína/metabolismo , Animales , Anticonvulsivantes/metabolismo , Biotransformación , Carbamazepina/metabolismo , Cromatografía Liquida , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Glutatión/metabolismo , Humanos , Hígado/metabolismo , Masculino , Espectrometría de Masas , Oxígeno/metabolismo , Ratas , Ratas Wistar
17.
Eur J Pharm Sci ; 119: 70-82, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29592839

RESUMEN

Drug bioactivation to reactive metabolites capable of covalent adduct formation with bionucleophiles is a major cause of drug-induced adverse reactions. Therefore, elucidation of reactive metabolites is essential to unravel the toxicity mechanisms induced by drugs and thereby identify patient subgroups at higher risk. Etravirine (ETR) was the first second-generation Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) to be approved, as a therapeutic option for HIV-infected patients who developed resistance to the first-generation NNRTIs. Additionally, ETR came into market aiming to overcome some adverse effects associated with the previously used efavirenz (neurotoxicity) and nevirapine (hepatotoxicity) therapies. Nonetheless, post-marketing reports of severe ETR-induced skin rash and hypersensitivity reactions have prompted the U.S. FDA to issue a safety alert on ETR. Taking into consideration that ETR usage may increase in the near future, due to the possible use of the drug for coinfection with malaria and HIV, the development of reliable prognostic tools for early risk/benefit estimations is urgent. In the current study, high resolution mass spectrometry-based methodologies were integrated with MS3 experiments for the identification of reactive ETR metabolites/adducts: 1) in vitro incubation of the drug with human and rat liver S9 fractions in the presence of Phase I and II co-factors, including glutathione, as a trapping bionucleophile; and 2) in vivo, using urine samples from HIV-infected patients on ETR therapy. We obtained evidence for multiple bioactivation pathways leading to the formation of covalent adducts with glutathione and N-acetyl-L-cysteine. These results suggest that similar reactions may occur with cysteine residues of proteins, supporting a role for ETR bioactivation in the onset of the toxic effects elicited by the drug. Additionally, ETR metabolites stemming from amine oxidation, with potential toxicological significance, were identified in vitro and in vivo. Also noteworthy is the fact that new metabolic conjugation pathways of glucuronide metabolites were demonstrated for the first time, raising questions about their potential toxicological implications. In conclusion, these results represent not only a contribution towards the elucidation of new metabolic pathways of drugs in general but also an important step towards the elucidation of potentially toxic ETR pathways, whose understanding may be crucial for reliable risk/benefit estimations of ETR-based regimens.


Asunto(s)
Piridazinas/farmacocinética , Inhibidores de la Transcriptasa Inversa/farmacocinética , Activación Metabólica , Adulto , Anciano , Cromatografía Liquida , Femenino , Glutatión/metabolismo , Infecciones por VIH/orina , Humanos , Hígado/metabolismo , Persona de Mediana Edad , Nitrilos , Pirimidinas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
18.
Eur J Pharm Sci ; 105: 47-54, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28487145

RESUMEN

Efavirenz is an anti-HIV drug that presents relevant short- and long-term central nervous system adverse reactions. Its main metabolite (8-hydroxy-efavirenz) was demonstrated to be a more potent neurotoxin than efavirenz itself. This work was aimed to understand how efavirenz biotransformation to 8-hydroxy-efavirenz is related to its short- and long-term neuro-adverse reactions. To access those mechanisms, the expression and activity of Cyp2b enzymes as well as the thiolomic signature (low molecular weight thiols plus S-thiolated proteins) were longitudinally evaluated in the hepatic and brain tissues of rats exposed to efavirenz during 10 and 36days. Efavirenz and 8-hydroxy-efavirenz plasma concentrations were monitored at the same time points. Cyp2b induction had a delayed onset in liver (p<0.001), translating into increases in Cyp2b activity in liver and 8-hydroxy-efavirenz plasma concentration (p<0.001). Moreover, an increase in S-cysteinyl-glycinylated proteins (p<0.001) and in free low molecular weight thiols was also observed in liver. A distinct scenario was observed in hippocampus, which showed an underexpression of Cyp2b as well as a decrease in S-cysteinylated and S-glutathionylated proteins. Additionally, the observed changes in tissues were associated with a marked increase of S-glutathionylation in plasma. Our data suggest that the time course of efavirenz biotransformation results from different mechanisms for its short- and long-term neurotoxicity. The difference in the redox profile between liver and hippocampus might explain why, despite being mostly metabolized by the liver, this drug is neurotoxic. If translated to clinical practice, this evidence will have important implications in efavirenz short- and long-term neurotoxicity prevention and management.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Benzoxazinas/farmacocinética , Síndromes de Neurotoxicidad/metabolismo , Alquinos , Animales , Fármacos Anti-VIH/efectos adversos , Fármacos Anti-VIH/sangre , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Benzoxazinas/efectos adversos , Benzoxazinas/sangre , Benzoxazinas/metabolismo , Biotransformación , Ciclopropanos , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP2B1/metabolismo , Hipocampo/metabolismo , Hígado/metabolismo , Masculino , Síndromes de Neurotoxicidad/sangre , Corteza Prefrontal/metabolismo , Ratas Wistar , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo , Compuestos de Sulfhidrilo/metabolismo
19.
Arch Toxicol ; 91(3): 1199-1211, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27417440

RESUMEN

The development of metabolically competent in vitro models is of utmost importance for predicting adverse drug reactions, thereby preventing attrition-related economical and clinical burdens. Using the antiretroviral drug nevirapine (NVP) as a model, this work aimed to validate rat hepatocyte 3D spheroid cultures as competent in vitro systems to assess drug metabolism and bioactivation. Hepatocyte spheroids were cultured for 12 days in a stirred tank system (3D cultures) and exposed to equimolar dosages of NVP and its two major Phase I metabolites, 12-OH-NVP and 2-OH-NVP. Phase I NVP metabolites were detected in the 3D cultures during the whole culture time in the same relative proportions reported in in vivo studies. Moreover, the modulation of SULT1A1 activity by NVP and 2-OH-NVP was observed for the first time, pointing their synergistic effect as a key factor in the formation of the toxic metabolite (12-sulfoxy-NVP). Covalent adducts formed by reactive NVP metabolites with N-acetyl-L-cysteine and bovine serum albumin were also detected by high-resolution mass spectrometry, providing new evidence on the relative role of the reactive NVP metabolites, 12-sulfoxy-NVP, and NVP quinone methide, in toxicity versus excretion pathways. In conclusion, these results demonstrate the validity of the 3D culture system to evaluate drug bioactivation, enabling the identification of potential biomarkers of bioactivation/toxicity, and providing new evidence to the mechanisms underlying NVP-induced toxic events. This model, integrated with the analytical strategies described herein, is of anticipated usefulness to the pharmaceutical industry, as an upstream methodology for flagging drug safety alerts in early stages of drug development.


Asunto(s)
Hepatocitos/efectos de los fármacos , Nevirapina/farmacocinética , Esferoides Celulares/efectos de los fármacos , Acetilcisteína/química , Acetilcisteína/metabolismo , Animales , Arilsulfotransferasa/metabolismo , Biotransformación , Técnicas de Cultivo de Célula/métodos , Hepatocitos/metabolismo , Inactivación Metabólica , Ratas , Reproducibilidad de los Resultados
20.
Toxicol Lett ; 264: 106-113, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27825936

RESUMEN

Furan is a rodent hepatocarcinogen ubiquitously found in the environment and heat-processed foods. Furan undergoes cytochrome P450 2E1-catalyzed bioactivation to cis-2-butene-1,4-dial (BDA), which has been shown to form an electrophilic conjugate (GSH-BDA) with glutathione. Both BDA and GSH-BDA yield covalent adducts with lysine residues in proteins. Dose- and time-dependent epigenetic histone alterations have been observed in furan-treated rats. While the covalent modification of histones by chemical carcinogens has long been proposed, histone-carcinogen adducts have eluded detection in vivo. In this study, we investigated if the covalent modification of histones by furan may occur in vivo prior to epigenetic histone alterations. Using a "bottom-up" methodology, involving the analysis of tryptic peptides by liquid chromatography - high resolution mass spectrometry, we obtained evidence for a cross-link between GSH-BDA and lysine 107 of histone H2B isolated from the livers of male F344 rats treated with tumorigenic doses of furan. This cross-link was detected at the shortest treatment period (90 days) in the lowest dose group (0.92mg/kg body weight/day), prior to the identification of epigenetic changes, and occurred at a lysine residue that is a target for epigenetic modifications and crucial for nucleosome stability. Our results represent the first unequivocal proof of the occurrence of carcinogen-modified histones in vivo and suggest that such modification happens at the initial stages of furan-induced carcinogenesis. This type of alteration may be general in scope, opening new insights into the mechanisms of chemical carcinogenesis/toxicity and new opportunities for the development of early compound-specific biomarkers of exposure.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Carcinógenos/toxicidad , Furanos/toxicidad , Histonas/toxicidad , Animales , Pruebas de Carcinogenicidad , Furanos/metabolismo , Glutatión/química , Hígado/química , Hígado/metabolismo , Masculino , Péptidos/química , Ratas , Ratas Endogámicas F344 , Tripsina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA