Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Materials (Basel) ; 17(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255497

RESUMEN

Polymer-metal hybrid structures combine the merits of polymer and metal materials, making them widely applicable in fields such as aerospace and automotive industries. However, the main challenge lies in achieving efficient and strong connections between the metal and polymer components. This paper uses the jet electrochemical machining (Jet-ECM) method to customize the surface morphologies on 6061 aluminum alloy (AA6061) sheets. The connection between AA6061 and carbon fiber-reinforced PA66 (CF/PA66) is then achieved through hot pressure welding (HPW). The effects of aluminum alloy surface morphology, welding force, and welding time on the mechanical properties and microstructure of the joint are investigated. The optimal process parameters are determined by the design of the experiment. The results show that the aluminum alloy surface morphology has the greatest impact on the mechanical property of the welded joint. The optimal process parameters are surface morphology with wider, shallower, and sparsely distributed grooves on the aluminum alloy surface, the welding force is 720 N, the welding time is 12 s, the welding temperature is 360 °C, the cooling time is 16 s, and the optimal peak load of the joint is 6690 N. Under the optimal parameters, the fracture morphology in the AA6061 side is almost entirely covered with CF/PA66. The joint experiences cohesive failure in most areas and fiber-matrix debonding in a small area.

2.
Materials (Basel) ; 16(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959566

RESUMEN

This study investigates the mechanical properties of exceptionally high-strength steel produced by wire and arc additive manufacturing (WAAM), using the 304 stainless steel wire and the low carbon wire (LCS). The study found that annealing treatment can enhance the steel's mechanical properties. The microstructure in the LCS layer changed from ferrite to bainite and then to a mixture of austenite, pearlite, and bainite with increasing annealing temperature. In contrast, the SS layer retained its martensitic structure, albeit with altered lath sizes. The annealing treatment also improved the orientation of the grains in the steel. The optimal annealing temperature observed for the steel was 900 ℃, which resulted in a maximum tensile strength of 1176 MPa along the Y direction and 1255 MPa along the Z direction. Despite the superior mechanical properties, the LCS layer still exhibited failure during tensile testing due to its lower hardness. The study suggests that annealing treatment can be a useful technique for enhancing the mechanical properties of high-strength steel in WAAM applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA