Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 820: 153261, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35065109

RESUMEN

Personal protective equipment (PPE) pollution has become one of the most pending environmental challenges resulting from the pandemic. While various studies investigated PPE pollution in the marine environment, freshwater bodies have been largely overlooked. In the present study, PPE monitoring was carried out in the vicinity of Lake Tana, the largest lake in Ethiopia. PPE density, types, and chemical composition (FTIR spectroscopy) were reported. A total of 221 PPEs were identified with a density ranging from 1.22 × 10-5 PPE m-2 (control site S1) to 2.88× 10-4 PPE m-2 with a mean density of 1.54 × 10-4 ± 2.58 × 10-5 PPE m-2. Mismanaged PPE waste was found in all the sampling sites, mostly consisting of surgical face masks (93.7%). Statistical analyzes revealed significantly higher PPE densities in sites where several recreational, touristic, and commercial activities take place, thus, revealing the main sources of PPE pollution. Furthermore, polypropylene and polyester fabrics were identified as the main components of surgical and reusable cloth masks, respectively. Given the hazard that PPEs represent to aquatic biota (e.g., entanglement, ingestion) and their ability to release microplastics (MPs), it is necessary to implement sufficient solid waste management plans and infrastructure where lake activities take place. Additionally, local authorities must promote and ensure sustainable tourism in order to maintain the ecosystems in Lake Tana. Prospective research priorities regarding the colonization and degradation of PPE, as well as the release of toxic chemicals, were identified and discussed.


Asunto(s)
COVID-19 , Equipo de Protección Personal , Eliminación de Residuos , Contaminación del Agua , Ecosistema , Contaminación Ambiental , Etiopía , Humanos , Lagos , Pandemias , Plásticos , Estudios Prospectivos , SARS-CoV-2
2.
J Hazard Mater ; 426: 128070, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34922133

RESUMEN

In the present contribution, two nationwide surveys of personal protective equipment (PPE) pollution were conducted in Peru and Argentina aiming to provide valuable information regarding the abundance and distribution of PPE in coastal sites. Additionally, PPE items were recovered from the environment and analyzed by Fourier transformed infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM) with Energy dispersive X-ray (EDX), and X-ray diffraction (XRD), and compared to brand-new PPE in order to investigate the chemical and structural degradation of PPE in the environment. PPE density (PPE m-2) found in both countries were comparable to previous studies. FTIR analysis revealed multiple polymer types comprising common PPE, mainly polypropylene, polyamide, polyethylene terephthalate, and polyester. SEM micrographs showed clear weathering signs, such as cracks, cavities, and rough surfaces in face masks and gloves. EDX elemental mapping revealed the presence of elemental additives, such as Ca in gloves and face masks and AgNPs as an antimicrobial agent. Other metals found on the surface of PPE were Mo, P, Ti, and Zn. XRD patterns displayed a notorious decrease in the crystallinity of polypropylene face masks, which could alter its interaction with external contaminants and stability. The next steps in this line of research were discussed.


Asunto(s)
COVID-19 , Equipo de Protección Personal , Humanos , Pandemias , Plásticos , SARS-CoV-2
3.
Artículo en Inglés | MEDLINE | ID: mdl-34777936

RESUMEN

BACKGROUND: The extensive use and production of PPE, and disposal in the COVID-19 pandemic increases the plastic wastes arise environmental threats. Roughly, 129 billion face masks and 65 billion plastic gloves every month are used and disposed of on the globe. The study aims to identify the polymer type of face masks and gloves and sustainable plastic waste management options. RESULTS: The identification of polymers, which can help for fuel conversion alternatives, was confirmed by FTIR and TGA/DTA analysis and confirms that the polymeric categories fit for the intended purpose. Moreover, the handling technique for upcycling and the environmental impacts of the medical face mask and glove were discussed. The FTIR result revealed that face masks and gloves are polypropylene and PVC thermoplastic polymer, respectively and they can be easily transformed to fuel energy via pyrolysis. The endothermic peaks around 431 ℃ for medical glove and 175 ℃ for surgical is observed tells that the melting point of the PVC and polypropylene of plastic polymers, respectively. The pyrolysis of the face mask and glove was carried out in a closed reactor at 400 ℃ for 1 h. Conferring to lab-scale processes, liquid, and wax fuel rate of 75%, char of 10%, and the rest non-condensable gases were estimated at the end. CONCLUSIONS: It can be concluded that the medical plastics can be recycled into oil due to their thermoplastics nature having high oil content and the waste to energy conversion can potentially reduce the volume of PPE plastic wastes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA