Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Clin Transl Med ; 13(8): e1350, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37620691

RESUMEN

BACKGROUND: Niemann-Pick disease type C (NPC) is a fatal neurodegenerative disorder caused by abnormal intracellular cholesterol trafficking. Cyclodextrins (CDs), the most promising therapeutic candidates for NPC, but with concerns about ototoxicity, are cyclic oligosaccharides with dual functions of unesterified cholesterol (UC) shuttle and sink that catalytically enhance the bidirectional flux and net efflux of UC, respectively, between the cell membrane and the extracellular acceptors. However, the properties of CDs that regulate these functions and how they could be used to improve treatments for NPC are unclear. METHODS: We estimated CD-UC complexation for nine CD derivatives derived from native α-, ß-, and γ-CD with different cavity sizes, using solubility and molecular docking analyses. The stoichiometry and complexation ability of the resulting complexes were investigated in relation to the therapeutic effectiveness and toxicity of each CD derivative in NPC experimental models. FINDINGS: We found that shuttle and sink activities of CDs are dependent on cavity size-dependent stoichiometry and substituent-associated stability of CD-UC complexation. The ability of CD derivatives to form 1:1 and 2:1 complexes with UC were correlated with their ability to normalize intracellular cholesterol trafficking serving as shuttle and with their cytotoxicity associated with cellular UC efflux acting as sink, respectively, in NPC model cells. Notably, the ability of CD derivatives to form an inclusion complex with UC was responsible for not only efficacy but ototoxicity, while a representative derivative without this ability negligibly affected auditory function, underscoring its preventability. CONCLUSIONS: Our findings highlight the importance of strategies for optimizing the molecular structure of CDs to overcome this functional dilemma in the treatment of NPC.


Asunto(s)
Ciclodextrinas , Enfermedad de Niemann-Pick Tipo C , Ototoxicidad , Humanos , Ciclodextrinas/farmacología , Simulación del Acoplamiento Molecular , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Colesterol
2.
Drug Deliv ; 30(1): 2173333, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36718920

RESUMEN

Liposomes are versatile carriers that can encapsulate various drugs; however, for delivery to the brain, they must be modified with a targeting ligand or other modifications to provide blood-brain barrier (BBB) permeability, while avoiding rapid clearance by reticuloendothelial systems through polyethylene glycol (PEG) modification. BBB-penetrating peptides act as brain-targeting ligands. In this study, to achieve efficient brain delivery of liposomes, we screened the functionality of eight BBB-penetrating peptides reported previously, based on high-throughput quantitative evaluation methods with in vitro BBB permeability evaluation system using Transwell, in situ brain perfusion system, and others. For apolipoprotein E mimetic tandem dimer peptide (ApoEdp), which showed the best brain-targeting and BBB permeability in the comparative evaluation of eight peptides, its lipid conjugate with serine-glycine (SG)5 spacer (ApoEdp-SG-lipid) was newly synthesized and ApoEdp-modified PEGylated liposomes were prepared. ApoEdp-modified PEGylated liposomes were effectively associated with human brain capillary endothelial cells via the ApoEdp sequence and permeated the membrane in an in vitro BBB model. Moreover, ApoEdp-modified PEGylated liposomes accumulated in the brain 3.9-fold higher than PEGylated liposomes in mice. In addition, the ability of ApoEdp-modified PEGylated liposomes to localize beyond the BBB into the brain parenchyma in mice was demonstrated via three-dimensional imaging with tissue clearing. These results suggest that ApoEdp-SG-lipid modification is an effective approach for endowing PEGylated liposomes with the brain-targeting ability and BBB permeability.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Animales , Humanos , Ratones , Apolipoproteínas/farmacología , Encéfalo , Células Endoteliales , Lípidos/farmacología , Liposomas/farmacología , Péptidos/farmacología , Polietilenglicoles/farmacología , Apolipoproteínas E
3.
FEBS Open Bio ; 13(2): 233-245, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36537756

RESUMEN

Supramolecular drug carriers are a promising approach for delivering anticancer drugs with high blood retention after administration. We previously synthesized folic acid-modified methyl-ß-cyclodextrin (FA-MßCD) as an anticancer drug. FA-MßCD has a selective autophagy-mediated antitumor effect on folic acid receptor (FR)-expressing cancer cells. Here, we enhanced the antitumor effect and safety of FA-MßCD by preparing a supramolecular nanoparticle formulation of FA-MßCD via host-guest interactions using an adamantane conjugate with human serum albumin (Ad-HSA). The Ad-HSA/FA-MßCD supramolecular complex prolonged the blood retention of FA-MßCD and improved its antitumor effect and safety after intravenous administration in tumor-bearing mice xenografted with FR-expressing cancer cells. These results suggest that the supramolecular technique using Ad-HSA is a promising approach for the delivery of CD-based anticancer drugs.


Asunto(s)
Adamantano , Antineoplásicos , Nanopartículas , Humanos , Animales , Ratones , Ácido Fólico/farmacología , Adamantano/farmacología , Albúminas
4.
Biol Pharm Bull ; 45(11): 1660-1668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36328502

RESUMEN

Hereditary amyloidgenic transthyretin (ATTR) amyloidosis is caused by a genetic point-mutated transthyretin such as TTR Val30Met (TTR V30M), since it forms protein aggregates called amyloid resulting in the tissue accumulation and functional disorders. In particular, ATTR produced by retinal pigment epithelial cells often causes ATTR ocular amyloidosis, which elicits deterioration of ocular function and ultimately blindness. Therefore, development of novel therapeutic agents is urgently needed. Genome-editing technology using Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated proteins (CRISPR-Cas9) system is expected to be a therapeutic approach to treat genetic diseases, such as ATTR amyloidosis caused by a point mutation in TTR gene. Previously, we reported that glucuronylglucosyl-ß-cyclodextrin conjugated with a polyamidoamine dendrimer (CDE) had excellent gene transfer ability and that underlying dendrimer inhibited TTR aggregation. Conversely, folate receptors are known to be highly expressed in retina; thus, folate has potential as a retinal target ligand. In this study, we prepared a novel folate-modified CDE (FP-CDE) and investigated its potential as a carrier for the retinal delivery of TTR-CRISPR plasmid DNA (pDNA). The results suggested that FP-CDE/TTR-CRISPR pDNA could be taken up by retinal pigment epithelial cells via folate receptors, exhibited TTR V30M amyloid inhibitory effect, and suppressed TTR production via the genome editing effect (knockout of TTR gene). Thus, FP-CDE may be useful as a novel therapeutic TTR-CRISPR pDNA carrier in the treatment of ATTR ocular amyloidosis.


Asunto(s)
Neuropatías Amiloides Familiares , Dendrímeros , Humanos , Prealbúmina/genética , Prealbúmina/metabolismo , Estudios de Factibilidad , Neuropatías Amiloides Familiares/tratamiento farmacológico , Amiloide , Plásmidos/genética , Ácido Fólico , Pigmentos Retinianos/uso terapéutico
5.
Eur J Pharm Biopharm ; 181: 113-121, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36372270

RESUMEN

Recent viral pandemics have increased global demand for vaccines. However, the supply of effective and safe vaccine not only to developed countries but also developing countries with inadequate storage equipment is still challenging due to the lack of robust systems which improve the efficacy and the stability of vaccines with few side effects. In our previous study, polypseudorotaxane (PPRX) hydrogels based on cyclodextrin (CyD) and polyethylene glycol (PEG) significantly improved the stability of antibody preparations and showed no serious adverse effects after subcutaneous injection, suggesting the possibility as safe vaccine formulations to stabilize an antigen protein. Moreover, recent studies have reported that one of the CyD derivatives, hydroxypropyl-ß-CyD (HP-ß-CyD), acts as an adjuvant to enhance protective type-2 immune responses. However, it is still unknown that CyD PPRX hydrogels enhance not only the stability of an antigen protein but also its immunogenicity with tolerable side effects. Here, we demonstrate that α- and γ-CyD PPRX hydrogels containing an antigen protein significantly induce antigen-specific type-2 immune responses. Moreover, α- and γ-CyD PPRX hydrogels showed negligible local irritation at the injection site, although subcutaneous injection of α-CyD alone induced skin lesion. Finally, shaking stability of the antigen protein at room temperature was significantly improved by being included in α- and γ-CyD PPRX hydrogels. These results propose the possibility of α- and γ-CyD PPRX hydrogels as novel vaccine formulations which improve both the immunogenicity and stability of an antigen protein with suppressed local irritation.


Asunto(s)
Ciclodextrinas , Vacunas , Hidrogeles , Polietilenglicoles
6.
ACS Appl Mater Interfaces ; 14(36): 40599-40611, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36052562

RESUMEN

Amyloidosis pathologically proceeds via production of amyloidogenic proteins by organs, formation of protein aggregates through structural changes, and their deposition on tissues. A growing body of evidence demonstrates that amyloidosis generally develops through three critical pathological steps: (1) production of amyloid precursor proteins, (2) amyloid formation, and (3) amyloid deposition. However, no clinically effective therapy that is capable of targeting each pathological step of amyloidosis independently is currently available. Here, we combined therapeutic effects and developed a short hairpin RNA expression vector (shRNA) complex with a cyclodextrin-appended cationic dendrimer (CDE) as a novel multitarget therapeutic drug that is capable of simultaneously suppressing these three steps. We evaluated its therapeutic effects on systemic transthyretin (ATTR) amyloidosis and Alzheimer's disease (AD) as localized amyloidosis, by targeting TTR and amyloid ß, respectively. CDE/shRNA exhibited RNAi effects to suppress amyloid protein production and also achieved both inhibition of amyloid formation and disruption of existing amyloid fibrils. The multitarget therapeutic effects of CDE/shRNA were confirmed by evaluating TTR deposition reduction in early- and late-onset human ATTR amyloidosis model rats and amyloid ß deposition reduction in AppNL-G-F/NL-G-F AD model mice. Thus, the CDE/shRNA complex exhibits multifunctional therapeutic efficacy and may reveal novel strategies for establishing curative treatments for both systemic and localized amyloidosis.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ciclodextrinas , Dendrímeros , Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide , Péptidos beta-Amiloides , Proteínas Amiloidogénicas , Amiloidosis/tratamiento farmacológico , Amiloidosis/metabolismo , Animales , Ciclodextrinas/farmacología , Dendrímeros/farmacología , Humanos , Ratones , ARN Interferente Pequeño , Ratas
7.
Biomed Pharmacother ; 155: 113698, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116252

RESUMEN

Niemann-Pick disease type C (NPC) is a fatal disorder with abnormal intracellular cholesterol trafficking resulting in neurodegeneration and hepatosplenomegaly. A cyclic heptasaccharide with different degrees of substitution of 2-hydroxypropyl groups, 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD), acts as a strong cholesterol solubilizer and is under investigation for treating this disease in clinical trials, but its physicochemical properties and ototoxicity remain a concern. Here, we evaluated the potential of mono-6-O-α-maltosyl-γ-CD (G2-γ-CD), a single-maltose-branched cyclic octasaccharide with a larger cavity than HP-ß-CD, for treating NPC. We identified that G2-γ-CD ameliorated NPC manifestations in model mice and showed lower ototoxicity in mice than HP-ß-CD. To investigate the molecular mechanisms of action behind the differential ototoxicity of these CDs, we performed cholesterol solubility analysis, proton nuclear magnetic resonance spectroscopy, and molecular modeling, and estimated that the cholesterol inclusion mode of G2-γ-CD maintained solely the 1:1 inclusion complex, whereas that of HP-ß-CD shifted to the highly-soluble 2:1 complex at higher concentrations. We predicted the associations of these differential complexations of CDs with cholesterol with the profile of disease attenuation and of the auditory cell toxicity using specific cell models. We proposed that G2-γ-CD can serve as a fine-tuned cholesterol solubilizer for treating NPC, being highly biocompatible and physicochemically suitable for clinical application.


Asunto(s)
Pérdida Auditiva , Enfermedad de Niemann-Pick Tipo C , Ototoxicidad , gamma-Ciclodextrinas , Ratones , Animales , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , 2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , 2-Hidroxipropil-beta-Ciclodextrina/química , Maltosa/uso terapéutico , Protones , Colesterol/uso terapéutico , Excipientes/uso terapéutico , Pérdida Auditiva/tratamiento farmacológico
8.
Chembiochem ; 22(22): 3190-3198, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34467611

RESUMEN

Artificial supramolecular systems capable of self-assembly and that precisely function in biological media are in high demand. Herein, we demonstrate a highly specific host-guest-pair system that functions in living cells. A per-O-methyl-ß-cyclodextrin derivative (R8-B-CDMe ) bearing both an octaarginine peptide chain and a BODIPY dye was synthesized as a fluorescent intracellular delivery tool. R8-B-CDMe was efficiently taken up by HeLa cells through both endocytosis and direct transmembrane pathways. R8-B-CDMe formed a 2 : 1 inclusion complex with tetrakis(4-sulfonatophenyl)porphyrin (TPPS) as a guest molecule in water, from which fluorescence resonance energy transfer (FRET) from R8-B-CDMe to TPPS was observed. The FRET phenomenon was clearly detected in living cells using confocal microscopy techniques, which revealed that the formed supramolecular R8-B-CDMe /TPPS complex was maintained within the cells. The R8-B-CDMe cytotoxicity assay revealed that the addition of TPPS counteracts the strong cytotoxicity (IC50 =16 µM) of the CD cavity due to complexation within the cells. A series of experiments demonstrated the bio-orthogonality of the supramolecular per-O-methyl-ß-CD/tetraarylporphyrin host-guest pair in living cells.


Asunto(s)
Compuestos de Boro/química , Transferencia Resonante de Energía de Fluorescencia , Mesoporfirinas/química , Péptidos/química , beta-Ciclodextrinas/química , Células HeLa , Humanos , Sustancias Macromoleculares/química , Estructura Molecular , Espectrometría de Fluorescencia
9.
Pharmaceutics ; 13(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064866

RESUMEN

Recently, the number of gene and oligonucleotide drugs are increasing. Of various drug delivery systems (DDSs) for gene and oligonucleotide drugs, few examples of the clinical application of polymer as drug carriers are known, despite development of the novel polymers has been progressing. Cyclodextrin (CD) conjugates with starburst polyamidoamine (PAMAM) dendrimer (CDEs), as a new type of polymer-based carriers, were first published in 2001. After that, galactose-, lactose-, mannose-, fucose-, folate-, and polyethyleneglycol (PEG)-appended CDEs have been prepared for passive and active targeting for gene, oligonucleotide, and low-molecular-weight drugs. PEG-appended CDE formed polypsuedorotaxanes with α-CD and γ-CD, which are useful for a sustained release system of gene and oligonucleotide drugs. Interestingly, CDEs were found to have anti-inflammatory effects and anti-amyloid effects themselves, which have potential as active pharmaceutical ingredients. Most recently, CDE is reported to be a useful Cas9-RNA ribonucleoproteins (Cas9 RNP) carrier that induces genome editing in the neuron and brain. In this review, the history and progression of CDEs are overviewed.

10.
J Phys Chem B ; 125(9): 2308-2316, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33646771

RESUMEN

The binding affinity of the beta-cyclodextrin (ß-CyD) derivatives with Doxorubicin (Dox) is evaluated by means of the 3D-RISM/KH theory combined with the molecular dynamics simulation in order to screen the compounds for suppressing a side-effect of the cancer drug. A protocol revised for the external and conformational entropies of the host-guest system is employed to calculate the binding free energy. It is found that the direct interactions of CyD with Dox and the desolvation free-energies of the both compounds largely cancel out to leave moderate contributions to the affinity, which are comparable to those from the entropies. The results shed light on the entropy terms for determining the binding affinity, although the external-entropy terms are essentially constant over all the compounds examined and do not affect the screening. The theoretical result is compared with the experimental data of the association constant for a CyD derivative which was predicted to be the best compound by the preliminary calculation without the entropy terms.


Asunto(s)
Ciclodextrinas , Doxorrubicina , Entropía , Conformación Molecular , Simulación de Dinámica Molecular
11.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466390

RESUMEN

Niemann-Pick disease type C (NPC) is a recessive hereditary disease caused by mutation of the NPC1 or NPC2 gene. It is characterized by abnormality of cellular cholesterol trafficking with severe neuronal and hepatic injury. In this study, we investigated the potential of glycoprotein nonmetastatic melanoma protein B (GPNMB) to act as a biomarker reflecting the therapeutic effect of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) in an NPC mouse model. We measured serum, brain, and liver expression levels of GPNMB, and evaluated their therapeutic effects on NPC manifestations in the brain and liver after the intracerebroventricular administration of HP-ß-CD in Npc1 gene-deficient (Npc1-/-) mice. Intracerebroventricular HP-ß-CD inhibited cerebellar Purkinje cell damage in Npc1-/- mice and significantly reduced serum and cerebellar GPNMB levels. Interestingly, we also observed that the intracerebral administration significantly reduced hepatic GPNMB expression and elevated serum ALT in Npc1-/- mice. Repeated doses of intracerebroventricular HP-ß-CD (30 mg/kg, started at 4 weeks of age and repeated every 2 weeks) drastically extended the lifespan of Npc1-/- mice compared with saline treatment. In summary, our results suggest that GPNMB level in serum is a potential biomarker for evaluating the attenuation of NPC pathophysiology by intracerebroventricular HP-ß-CD treatment.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/administración & dosificación , Cerebelo/efectos de los fármacos , Proteínas del Ojo/metabolismo , Hígado/efectos de los fármacos , Melanoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/metabolismo , Animales , Biomarcadores/metabolismo , Cerebelo/metabolismo , Colesterol/metabolismo , Modelos Animales de Enfermedad , Femenino , Glicoproteínas/metabolismo , Infusiones Intraventriculares , Hígado/metabolismo , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células de Purkinje/efectos de los fármacos , Células de Purkinje/metabolismo
12.
Life Sci ; 268: 118991, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33417955

RESUMEN

AIMS: The objective of this study was to investigate the effects of administering sacran, a sulfated polysaccharide, on liver biology, gut microbiota, oxidative stress, and inflammation on stroke-prone spontaneously hypertensive (SHRSP5/Dmcr) rats that develop fibrotic steatohepatitis with histological similarities to that of non-alcoholic steatohepatitis (NASH). MAIN METHODS: Four groups of 8-week-old SHRSP5/Dmcr rats were fed a high fat-cholesterol (HFC) diet for 4 and 8 weeks and administered either sacran (80 mg/kg/day) or a non-treatment, respectively. Liver function was evaluated by biochemical and histopathological analyses. Hepatic inflammatory markers were measured using mRNA expression. Fecal microbial profiles were determined via 16S rRNA sequencing. A triglyceride (TG) absorption test was administered to the 8-week-old Sprague-Dawley (SD) rats. KEY FINDING: Sacran administration was observed to decrease the extent of oxidative stress and hepatic biochemical parameters in serum and hepatic injury with the levels of transforming growth factor-beta (TGF-ß1) and tumor necrosis factor-alpha (TNF-α), being increased compared to those of the non-treatment group. At the genus level, sacran administration caused a significant decrease in the harmful Prevotella genus, and a significant increase in the useful Blautia genus was observed. Sacran administration also decreased the serum TG increase that was induced by administering corn oil to the SD rats. SIGNIFICANCE: We conclude that sacran administration has the potential to reduce the absorption of lipids into blood and to improve several gut microbiotas, in the gastrointestinal tract, thereby inhibiting the subsequent development of oxidative stress and hepatic markers in the systematic circulation on NASH.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Lípidos/farmacocinética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Polisacáridos/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Masculino , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Ratas Endogámicas SHR , Ratas Sprague-Dawley
13.
Appl Radiat Isot ; 163: 109201, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32561042

RESUMEN

In this study, the tumor accumulation and antitumor effect of folate-modified cyclodextrin (ND201) purified with folate receptor (FR) connotated with BSH were examined. ND201 and BSH were stably bound in blood, and the mixing ratio 1:1 was most efficient. ND-BSH showed higher boron concentration (38.5 ppm) than BSH alone (11.25 ppm). The maximum ND-BSH tumor/blood ratio was also markedly higher (6.58) than that of BSH alone (1.04). ND-BSH showed a significant antitumor effect compared with BSH after neutron irradiation.


Asunto(s)
Compuestos de Boro/metabolismo , Ciclodextrinas/química , Ácido Fólico/química , Neoplasias/metabolismo , Animales , Compuestos de Boro/sangre , Terapia por Captura de Neutrón de Boro/métodos , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias/radioterapia
14.
Yakugaku Zasshi ; 140(5): 617-624, 2020.
Artículo en Japonés | MEDLINE | ID: mdl-32378661

RESUMEN

Pancreatic cancer is the fourth-leading cause of death from cancer in Japan, after lung, colorectal, and stomach cancers and has the lowest survival among these tumors, because of not only no symptoms, no screening tool and no biomarkers but also high rates of recurrence and metastasis. In addition, pancreatic cancer has excessive stroma which serves as a severe biological barrier for anticancer drug delivery and successful treatment. Therefore, there are many challenges for drug delivery systems for the treatment of pancreatic cancer. Recently, we developed self-assembly PEGylation retaining activity (SPRA) technology, which comprises a reversible pegylated protein complex without loss of bioactivity. SPRA technology is based on a host-guest interaction between PEGylated ß-cyclodextrin and adamantane-appended protein. In this review, first pancreatic cancer is introduced, second, principle drug delivery systems for the treatment of pancreatic cancer are described, and third the concept of SPRA technology as well as examples of SPRA proteins, especially focusing on the potential of SPRA-bromelain for treatment of pancreatic cancer, are introduced.


Asunto(s)
Antineoplásicos/administración & dosificación , Líquidos Corporales/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Sustancias Macromoleculares , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Adamantano , Bromelaínas , Humanos , Polietilenglicoles , Presión , beta-Ciclodextrinas
15.
ACS Appl Bio Mater ; 3(5): 3005-3014, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35025347

RESUMEN

Pancreatic cancer is one of the most difficult cancers to treat largely because of the inability of anticancer drugs to penetrate into the cancer tissue as the result of the dense extracellular matrix (ECM). On the other hand, bromelain is known to degrade the ECM in cancerous tissue. However, the half-life of bromelain in blood is short, leading to its low accumulation in tissues. Recently, we developed a reversible poly(ethylene glycol) (PEG) modification technology that is able to improve blood retention of proteins without loss of activity and termed it "Self-assembly PEGylation Retaining Activity (SPRA)" technology. Here, we prepared reversible PEGylated bromelain using SPRA technology (SPRA-bromelain) possessing high activity, long blood retention, and high tumor accumulation and evaluated its potential as a drug delivery system for pancreatic cancer. SPRA-bromelain was prepared by mixing adamantane-modified bromelain and multisubstituted-PEGylated ß-cyclodextrins (ß-CyDs) containing 2 or 20 kDa PEG chains in water. SPRA-bromelain was formed by a host-guest interaction between adamantane and ß-CyD (Kc > 104 M-1). SPRA-bromelain showed high in vitro gelatin-degrading activity and enhanced not only the accumulation of fluorescein isothiocyanate (FITC)-dextran (2 MDa) in the tumor but also the in vivo antitumor activities of doxorubicin and doxorubicin encapsulated in PEGylated liposomes (DOXIL) after intravenous administration in tumor-bearing mice. These findings suggest that SPRA-bromelain could be a powerful tool for drug delivery in pancreatic cancer.

16.
Sci Rep ; 9(1): 16825, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727981

RESUMEN

We previously reported the identification of a novel antimitotic agent with carbazole and benzohydrazide structures: N'-[(9-ethyl-9H-carbazol-3-yl)methylene]-2-iodobenzohydrazide (code number NP-10). However, the mechanism(s) underlying the cancer cell-selective inhibition of mitotic progression by NP-10 remains unclear. Here, we identified NP-10-interacting proteins by affinity purification from HeLa cell lysates using NP-10-immobilized beads followed by mass spectrometry. The results showed that several mitosis-associated factors specifically bind to active NP-10, but not to an inactive NP-10 derivative. Among them, NUP155 and importin ß may be involved in NP-10-mediated mitotic arrest. Because NP-10 did not show antitumor activity in vivo in a previous study, we synthesized 19 NP-10 derivatives to identify more effective NP-10-related compounds. HMI83-2, an NP-10-related compound with a Cl moiety, inhibited HCT116 cell tumor formation in nude mice without significant loss of body weight, suggesting that HMI83-2 is a promising lead compound for the development of novel antimitotic agents.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Proteínas de Complejo Poro Nuclear/metabolismo , Polietilenglicoles/administración & dosificación , beta Carioferinas/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HeLa , Humanos , Ratones , Ratones Desnudos , Polietilenglicoles/síntesis química , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Biol Pharm Bull ; 42(10): 1679-1688, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31582656

RESUMEN

Targeted drug delivery system (DDS) is required for RNA interference (RNAi) therapy to increase the therapeutic effect and to reduce the adverse effect. Especially in transthyretin (TTR)-related amyloidosis, hepatocyte specific delivery is desired because TTR mainly expresses in hepatocyte. Herein, we report on a hepatocyte-specific small interfering RNA (siRNA) delivery system using polyethylene glycol (PEG)-modified lactosylated dendrimer (generation 3; G3) conjugates with α-cyclodextrin (PEG-LαCs (G3)) for TTR-related amyloidosis therapy, and investigated the in vitro and in vivo gene silencing effect of PEG-LαCs (G3)/siRNA polyplexes. PEG-LαC (G3, average degree of substitution of PEG (DSP) 2)/TTR siRNA (siTTR) polyplex exhibited the asialoglycoprotein receptor (ASGPR)-mediated cellular uptake, high endosomal escaping ability and localization of the siRNA in cytoplasm, resulting in significant TTR silencing in HepG2 cells. In vivo studies showed that PEG-LαC (G3, DSP2)/siTTR polyplex led to a significant TTR silencing effect in liver after systemic administration to mice. Furthermore, safety evaluation revealed that PEG-LαC (G3, DSP2)/siTTR polyplex had no significant toxicity both in vitro and in vivo. These findings suggest the utility of PEG-LαC (G3, DSP2) as a promising hepatocyte-specific siRNA delivery system both in vitro and in vivo, and as a therapeutic approach for TTR-related amyloidosis.


Asunto(s)
Neuropatías Amiloides Familiares/tratamiento farmacológico , Ciclodextrinas/administración & dosificación , Dendrímeros/administración & dosificación , Hepatocitos/metabolismo , Polietilenglicoles/administración & dosificación , Prealbúmina/genética , ARN Interferente Pequeño/administración & dosificación , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/metabolismo , Animales , Dendrímeros/farmacocinética , Células Hep G2 , Humanos , Masculino , Ratones Endogámicos BALB C , Polietilenglicoles/farmacocinética , Prealbúmina/metabolismo , ARN Interferente Pequeño/farmacocinética
18.
AAPS J ; 21(4): 54, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30993472

RESUMEN

We have previously reported the utility of folate-polyethylene glycol-appended dendrimer conjugate with glucuronylglucosyl-ß-cyclodextrin (Fol-PEG-GUG-ß-CDE) (generation 3) as a tumor-selective carrier for siRNA against polo-like kinase 1 (siPLK1) in vitro. In the present study, we evaluated the potential of Fol-PEG-GUG-ß-CDE as a carrier for the low-molecular antitumor drug doxorubicin (DOX). Further, to fabricate advanced antitumor agents, we have prepared a ternary complex of Fol-PEG-GUG-ß-CDE/DOX/siPLK1 and evaluated its antitumor activity both in vitro and in vivo. Fol-PEG-GUG-ß-CDE released DOX in an acidic pH and enhanced the cellular accumulation and cytotoxic activity of DOX in folate receptor-α (FR-α)-overexpressing KB cells. Importantly, the Fol-PEG-GUG-ß-CDE/DOX/siPLK1 ternary complex exhibited higher cytotoxic activity than a binary complex of Fol-PEG-GUG-ß-CDE with DOX or siPLK1 in KB cells. In addition, the cytotoxic activity of the ternary complex was reduced by the addition of folic acid, a competitor against FR-α. Furthermore, the ternary complex showed a significant antitumor activity after intravenous administration to the tumor-bearing mice. These results suggest that Fol-PEG-GUG-ß-CDE has the potential of a tumor-selective co-delivery carrier for DOX and siPLK1.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Dendrímeros/química , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Oligosacáridos/química , ARN Interferente Pequeño/administración & dosificación , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Liberación de Fármacos , Humanos , Células KB , Ratones Desnudos , Tamaño de la Partícula , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , ARN Interferente Pequeño/farmacología , Propiedades de Superficie , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
19.
ACS Chem Neurosci ; 10(5): 2584-2590, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30912637

RESUMEN

Amyloidogenic transthyretin (ATTR) amyloidosis is caused by a formation of ATTR amyloid fibrils. Because ATTR misfolding triggers the formation of aggregates and amyloid fibrils, which are considered to deposit on the tissues, novel clinically effective therapeutic strategies targeted to those processes are urgently needed. In this study, to discover a new drug candidate for ATTR amyloidosis therapy, we focused on polyamidoamine dendrimer (dendrimer), a 3D-structural nanomaterial, which has a branched cationic polymer repeating polyamidoamine units. Dendrimer (G2) not only inhibited ATTR V30M amyloid fibril formation, but also reduced already formed ATTR V30M amyloid fibrils by reducing ß-sheet structure of ATTR V30M protein. Moreover, intravenous administration of dendrimer (G2) reduced TTR deposition in human ATTR V30M transgenic rats. These results indicate that dendrimer (G2) may possess both inhibitory and breaking effects on ATTR V30M amyloid, suggesting that dendrimer has the potential as a dual effective agents against TTR amyloidosis.


Asunto(s)
Neuropatías Amiloides Familiares/tratamiento farmacológico , Amiloide/efectos de los fármacos , Dendrímeros/farmacología , Poliaminas/farmacología , Animales , Dendrímeros/administración & dosificación , Humanos , Poliaminas/administración & dosificación , Ratas , Ratas Transgénicas , Proteínas Recombinantes , Termodinámica
20.
Yakugaku Zasshi ; 139(2): 175-183, 2019.
Artículo en Japonés | MEDLINE | ID: mdl-30713226

RESUMEN

Supramolecular chemistry is a useful and important domain for understanding pharmaceutical sciences, since various physiological reactions (e.g., protein association) and drug activities (e.g., the substrate/receptor reaction) are based on supramolecular chemistry. Biological components, such as DNA and cells, are also supermolecules. However, supramolecular chemistry to date has not been a major domain in the field of pharmaceutical study. In this article, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences" which combines pharmaceutical sciences and supramolecular chemistry. "Supramolecular pharmaceutical sciences" could encompass strictly controlled molecular arrangement, stimulus responsible molecular motion, new functions beyond those of existing molecules, more accurate drug design, new active pharmaceutical ingredients, new perspectives for the investigation of the drug mechanisms, and novel pharmaceutical technologies. Moreover, pharmaceutical sciences are useful for supramolecular chemistry, because biological reactions are very accurate reactions, making this a win-win relationship. Thus, supramolecular pharmaceutical sciences could be useful for developing new methods, hypotheses, ideas, materials, mechanisms, and strategies in the realm of pharmaceutical science.


Asunto(s)
Biofarmacia/tendencias , Diseño de Fármacos , Predicción , Sustancias Macromoleculares/química , Antracenos/química , Ciclodextrinas/química , Hidrogeles , Conformación Molecular , Poloxámero/química , Polietilenglicoles , Rotaxanos/química , Tecnología Farmacéutica/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA