Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Radiother Oncol ; 191: 110073, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38145791

RESUMEN

PURPOSE: Memory is one of the main specific cognitive domains impaired with attention and processing speed after a pediatric brain tumor. This work explored the long-term impact of radiotherapy in children with posterior fossa tumor (PFT) on brain connectivity in neural circuits involved in memory using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS: A total of 20 irradiated and 15 non-irradiated PFT survivors, and 21 healthy controls, prospectively included in the IMPALA study (NCT04324450), performed memory tests assessing episodic, procedural, and working memories and were subjected to an rs-fMRI. We manually contoured main structures involved in memory to explore connectivity at rest in a seed-to-voxel analysis. The groups were compared and differences in connectivity were correlated with behavioral scores and irradiation doses. RESULTS: The performance of all mnesic tasks was lower in PFT survivors with a greater alteration in working and episodic memory in irradiated patients. Irradiated survivors had atypical connectivities in all memory circuits compared to controls and in cortico-caudate and cortico-cerebellar circuits compared to non-irradiated survivors. Non-irradiated survivors had only atypical connectivities in the cortico-cerebellar circuits compared to controls. In irradiated survivors, atypical connectivities in cortico-hippocampal circuits were linked with episodic memory scores and dose of irradiation to the left hippocampus and in cortico-striatal circuits with procedural memory scores and dose of irradiation to the striatum. CONCLUSION: The results of this study highlight that irradiation has a long-term impact on brain connectivity in brain circuits involved in memory after pediatric PFT with a specific radiation-dose effect in supratentorial structures.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Infratentoriales , Niño , Humanos , Atención , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Neoplasias Infratentoriales/diagnóstico por imagen , Neoplasias Infratentoriales/radioterapia , Neoplasias Infratentoriales/patología , Imagen por Resonancia Magnética , Memoria a Corto Plazo , Estudios Prospectivos , Estudios de Casos y Controles
2.
Clin Transl Radiat Oncol ; 33: 7-14, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34988299

RESUMEN

BACKGROUND: Posterior fossa tumors represent two thirds of brain tumors in children. Although progress in treatment has improved survival rates over the past few years, long-term memory impairments in survivors are frequent and have an impact on academic achievement. The hippocampi, cerebellum and cerebellar-cortical networks play a role in several memory systems. They are affected not only by the location of the tumor itself and its surgical removal, but also by the supratentorial effects of complementary treatments, particularly radiotherapy. The IMPALA study will investigate the impact of irradiation doses on brain structures involved in memory, especially the hippocampi and cerebellum. METHODS/DESIGN: In this single-center prospective behavioral and neuro-imaging study, 90 participants will be enrolled in three groups. The first two groups will include patients who underwent surgery for a posterior fossa brain tumor in childhood, who are considered to be cured, and who completed treatment at least 5 years earlier, either with radiotherapy (aggressive brain tumor; Group 1) or without (low-grade brain tumor; Group 2). Group 3 will include control participants matched with Group 1 for age, sex, and handedness. All participants will perform an extensive battery of neuropsychological tests, including an assessment of the main memory systems, and undergo multimodal 3 T MRI. The irradiation dose to the different brain structures involved in memory will be collected from the initial radiotherapy dosimetry. DISCUSSION: This study will provide long-term neuropsychological data about four different memory systems (working memory, episodic memory, semantic memory, and procedural memory) and the cognitive functions (attention, language, executive functions) that can interfere with them, in order to better characterize memory deficits among the survivors of brain tumors. We will investigate the correlations between neuropsychological and neuroimaging data on the structural (3DT1), microstructural (DTI), functional (rs-fMRI), vascular (ASL) and metabolic (spectroscopy) impact of the tumor and irradiation dose. This study will thus inform the setting of dose constraints to spare regions linked to the development of cognitive and memory functions. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04324450, registered March 27, 2020, updated January 25th, 2021. Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/NCT04324450.

3.
Brain Struct Funct ; 226(2): 351-364, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33389044

RESUMEN

Iron plays an important role in many neurobiological processes, especially in the basal ganglia, the brain structures with the highest concentration. Composed of the pallidum and putamen, the lentiform nucleus plays a key role in the basal ganglia circuitry. With MRI advances, iron-based sequences such as R2* and quantitative susceptibility mapping (QSM) are now available for detecting and quantifying iron in different brain structures. Since their validation using classic iron detection techniques (histology or physical techniques), these sequences have attracted growing clinical attention, especially in the field of extrapyramidal syndromes that particularly affect the basal nuclei. Accurate mapping of iron in these nuclei and their connections is needed to gain a better understanding of this specific anatomy, before considering its involvement in the physiopathological processes. We performed R2* and QSM along with Perls histology, to gain new insights into the distribution of iron in the lentiform nucleus and its surrounding structures, based on four specimens obtained from voluntary donors. We found that iron is preferentially distributed in the anterior part of the globus pallidus externus and the posterior part of the putamen. The lateral wall of the putamen is iron-poor, compared with the lateral medullary lamina and intraputaminal fibers. The relevance of perivascular iron concentration, along with pallido- and putaminofugal iron-rich fibers, is discussed.


Asunto(s)
Cuerpo Estriado/diagnóstico por imagen , Hierro/análisis , Anciano , Anciano de 80 o más Años , Autopsia , Mapeo Encefálico , Cuerpo Estriado/química , Cuerpo Estriado/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino
4.
Front Neuroanat ; 13: 68, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333421

RESUMEN

Iron levels in the brain can be estimated using newly developed specific magnetic resonance imaging (MRI) sequences. This technique has several applications, especially in neurodegenerative disorders like Alzheimer's disease or Parkinson's disease. Coupling ex vivo MRI with histology allows neuroscientists to better understand what they see in the images. Iron is one of the most extensively studied elements, both by MRI and using histological or physical techniques. Researchers were initially only able to make visual comparisons between MRI images and different types of iron staining, but the emergence of specific MRI sequences like R2* or quantitative susceptibility mapping meant that quantification became possible, requiring correlations with physical techniques. Today, with advances in MRI and image post-processing, it is possible to look for MRI/histology correlations by matching the two sorts of images. For the result to be acceptable, the choice of methodology is crucial, as there are hidden pitfalls every step of the way. In order to review the advantages and limitations of ex vivo MRI correlation with iron-based histology, we reviewed all the relevant articles dealing with the topic in humans. We provide separate assessments of qualitative and quantitative studies, and after summarizing the significant results, we emphasize all the pitfalls that may be encountered.

5.
Parkinsonism Relat Disord ; 65: 146-152, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31182373

RESUMEN

BACKGROUND: Prior work demonstrated that free water in the posterior substantia nigra (SN) was elevated in Parkinson's disease (PD) compared to healthy controls (HC) across single- and multi-site cohorts, and increased over 1 year in Parkinson's disease but not in relation with the iron deposition in SN with the relaxometry T2*. OBJECTIVES: The main objective of the present study was to evaluate changes in the SN using relaxometry T2*, single- and bi-tensor models of diffusion magnetic resonance imaging between PD patients and HC. METHODS: 39 subjects participated in this study, including 21 HCs and 18 PD patients, in moderate stage (7 years), whose data were collected at two visits separated by approximately 2 years, underwent 3-T MRI comprising: T2*-weighted, T1-weighted and diffusion tensor imaging (DTI) scans. Relaxometry T2*, bi-tensor free water (FW), free-water-corrected fractional anisotropy, free-water-corrected mean diffusivity, single-tensor fractional anisotropy, and single-tensor mean diffusivity were computed for the anterior, posterior and whole substantia nigra. RESULTS: In the anterior SN, relaxometry T2* values were greater for PD patients than HCs. In the posterior SN, free water, single- and bi-tensor mean diffusivity values were greater for PD patients than HCs. No significant change were found over time in FW/MD/R2* maps for PD patients with moderate stage. CONCLUSION: The specific increase of R2* in the anterior SN concomitant with the specific increase of FW in posterior SN suggests a complementary aspect of the two parameters and, perhaps, different underlying pathophysiological processes.


Asunto(s)
Agua Corporal/diagnóstico por imagen , Hierro , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Sustancia Negra/diagnóstico por imagen , Anciano , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA