Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Front Oncol ; 14: 1389345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015498

RESUMEN

Introduction: Scarce real-life data exists for COVID-19 management in hematologic disease (HD) patients in the Omicron era. Purpose: To assess the current clinical management and outcome of SARS-CoV-2 infection diagnosed, identify the risk factors for severe outcomes according to the HD characteristics and cell therapy procedures in a real-world setting. Methods: A retrospective observational registry led by the Spanish Transplant Group (GETH-TC) with 692 consecutive patients with HD from December 2021 to May 2023 was analyzed. Results: Nearly one-third of patients (31%) remained untreated and presented low COVID-19-related mortality (0.9%). Nirmatrelvir/ritonavir was used mainly in mild COVID-19 cases in the outpatient setting (32%) with a low mortality (1%), while treatment with remdesivir was preferentially administered in moderate-to-severe SARS-CoV-2 infection cases during hospitalization (35%) with a mortality rate of 8.6%. The hospital admission rate was 23%, while 18% developed pneumonia. COVID-19-related mortality in admitted patients was 14%. Older age, autologous hematopoietic stem cell transplantation (SCT), chimeric antigen receptor T-cell therapy, corticosteroids and incomplete vaccination were factors independently associated with COVID-19 severity and significantly related with higher rates of hospital admission and pneumonia. Incomplete vaccination status, treatment with prior anti-CD20 monoclonal antibodies, and comorbid cardiomyopathy were identified as independent risk factors for COVID-19 mortality. Conclusions: The results support that, albeit to a lower extent, COVID-19 in the Omicron era remains a significant problem in HD patients. Complete vaccination (3 doses) should be prioritized in these immunocompromised patients. The identified risk factors may help to improve COVID-19 management to decrease the rate of severe disease, ICU admissions and mortality.

2.
Horm Behav ; 164: 105593, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909429

RESUMEN

Autism Spectrum Disorder (ASD) is characterized by differences in social communication and interaction, as well as areas of focused interests and/or repetitive behaviors. Recent studies have highlighted a higher prevalence of endocrine and reproductive disturbances among females on the autism spectrum, hinting at potential disruptions within the hypothalamus-pituitary-ovary (HPO) axis. This research aims to explore the reproductive health disparities in ASD using an animal model of autism, the C58/J inbred mouse strain, with a focus on reproductive performance and hormonal profiles compared to the C57BL/6J control strain. Our findings revealed that the estrous cycle in C58/J females is disrupted, as evidenced by a lower frequency of complete cycles and a lack of cyclical release of estradiol and progesterone compared to control mice. C58/J females also exhibited poor performance in several reproductive parameters, including reproductive lifespan and fertility index. Furthermore, estrogen receptor alpha content showed a marked decrease in the hypothalamus of C58/J mice. These alterations in the estrous cycle, hormonal imbalances, and reduced reproductive function imply dysregulation in the HPO axis. Additionally, our in-silico study identified a group of genes involved in infertility carrying single-nucleotide polymorphisms (SNPs) in the C58/J strain, which also have human orthologs associated with autism. These findings could offer valuable insights into the molecular underpinnings of neuroendocrine axis disruption and reproductive issues observed in ASD.

3.
Salud ment ; 47(1): 3-12, Jan.-Feb. 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1560490

RESUMEN

Abstract Introduction Anxiety, mood- and stress-related behaviors are regulated by sex hormones in pregnant and non-pregnant women. Very scarce information exists about the role of sex steroids in pregnant women displaying high levels of anxiety. Objective To determine sex hormones serum levels in pregnant women exhibiting high levels of anxiety symptoms. Method The Hamilton Anxiety Rating Scale (HARS/ HAM-A) was used to assess the intensity of anxiety symptoms in third-trimester pregnant women. Two groups were included in the study, pregnant women exhibiting severe anxiety (ANX; HARS scores ≥ 25; n = 101) and healthy control subjects (CTRL; n = 40) displaying lower scores for anxiety (HARS scores ≤ 7). Estradiol (E2), progesterone (P4), and testosterone (T) serum levels were measured using a standard chemiluminescent immunoassay. Bivariate and partial correlations were performed to detect significant associations between groups, clinical measures, biochemical data, and HARS scores. Results The anxiety group (ANX) showed an increase in E2 and T serum levels (p < .001) compared to CTRL. Conversely, significantly lower P4 levels were found in the symptomatic group (p < .001) as compared to the CTRL hormone values. The P4:E2 index was significantly reduced in pregnant women with high levels of anxiety (p < .001). Negative correlations between anxiety (HARS) scores, P4 serum levels (p = .02), and P4:E2 ratio (p = .04) were found in the symptomatic group. Conversely, T serum levels displayed a positive association (p = .001) with high levels of anxiety symptoms in the same group, after adjusting our data by clinical confounders. Discussion and conclusion Serum levels of sex-steroid hormones are altered in pregnant women exhibiting severe anxiety.


Resumen Introducción La ansiedad, el estado de ánimo y el estrés están regulados por diversos esteroides sexuales. Existe poca información sobre el papel que juegan estos esteroides en mujeres embarazadas con niveles elevados de ansiedad. Objetivo Determinar los niveles séricos de hormonas sexuales en mujeres embarazadas con altos índices de síntomas de ansiedad con respecto a mujeres gestantes sanas. Método Determinación de la intensidad de síntomas ansiosos empleando la escala de Hamilton de Ansiedad (HAM-A) en 141 mujeres embarazadas en el tercer trimestre de gestación. Cuantificación de los niveles séricos de estradiol (E2), progesterona (P4) y testosterona (T) por inmunoensayo estándar. Aplicación de las correlaciones de Pearson para detectar asociaciones entre parámetros clínicos y valores hormonales entre los grupos de estudio. Resultados Las mujeres con ansiedad severa (ANX; n = 101; HAM-A ≥ 25) mostraron niveles séricos más altos de E2 y T (p < .001), así como niveles más bajos de P4 (p < .001) en relación con el grupo control (CTRL, n = 40, HAM-A < 7). Se detectó una disminución significativa en el índice P4:E2 en el grupo de ANX (p < .001) y se observaron correlaciones negativas y positivas entre los puntajes elevados de ansiedad con los niveles circulantes de P4 (p = .02), en la taza P4:E2 (p = .04) y en los niveles séricos de T (p = .001) respectivamente, al ajustar nuestros datos con variables confusoras. Discusión y conclusión Los niveles circulantes de los esteroides sexuales se encontraron alterados en mujeres con ansiedad severa.

4.
Steroids ; 203: 109363, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182066

RESUMEN

Decidualization, a crucial process for successful pregnancy establishment and maintenance, involves endometrial stromal cell differentiation. This process is orchestrated by estradiol (E2), progesterone, and other stimuli that increase intracellular cyclic adenosine monophosphate (cAMP) levels. The intracellular progesterone receptor (PR), encoded by the PGR gene, has a key role in decidualization. This study aimed to understand the role of sex steroids and cAMP in regulating PGR expression during the in vitro decidualization of the human immortalized endometrial stromal cell line, T-HESC. We subjected the cells to individual and combined treatments of E2, medroxyprogesterone (MPA), and cAMP. Additionally, we treated cells with PR and estrogen receptor antagonists and a protein kinase A (PKA) inhibitor. We evaluated the expression of PGR isoforms and decidualization-associated genes by RT-qPCR. Our findings revealed that cAMP induced PGR-B and PGR-AB expression by activating the PKA signaling pathway, while MPA downregulated their expression through the PR. Furthermore, downstream genes involved in decidualization, such as those coding for prolactin (PRL), insulin-like growth factor-binding protein-1 (IGFBP1), and Dickkopf-1 (DKK1), exhibited positive regulation via the cAMP-PKA pathway. Remarkably, MPA-activated PR signaling induced the expression of IGFBP1 and DKK1 but inhibited that of PRL. In conclusion, we have demonstrated that the PKA signaling pathway induces PGR gene expression during in vitro decidualization of the T-HESC human endometrial stromal cell line. This study has unraveled some of the intricate regulatory mechanisms governing PGR expression during this fundamental process for implantation and pregnancy maintenance.


Asunto(s)
Decidua , Receptores de Progesterona , Embarazo , Femenino , Humanos , Decidua/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Endometrio/metabolismo , Progesterona/farmacología , Progesterona/metabolismo , AMP Cíclico/metabolismo , Células del Estroma/metabolismo , Expresión Génica , Células Cultivadas
5.
Mol Cell Biol ; 43(12): 631-649, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38014992

RESUMEN

PTP1B plays a key role in developing different types of cancer. However, the molecular mechanism underlying this effect is unclear. To identify molecular targets of PTP1B that mediate its role in tumorigenesis, we undertook a SILAC-based phosphoproteomic approach, which allowed us to identify Cdk3 as a novel PTP1B substrate. Substrate trapping experiments and docking studies revealed stable interactions between the PTP1B catalytic domain and Cdk3. In addition, we observed that PTP1B dephosphorylates Cdk3 at tyrosine residue 15 in vitro and interacts with it in human glioblastoma cells. Next, we found that pharmacological inhibition of PTP1B or its depletion with siRNA leads to cell cycle arrest with diminished activity of Cdk3, hypophosphorylation of Rb, and the downregulation of E2F target genes Cdk1, Cyclin A, and Cyclin E1. Finally, we observed that the expression of a constitutively active Cdk3 mutant bypasses the requirement of PTP1B for cell cycle progression and expression of E2F target genes. These data delineate a novel signaling pathway from PTP1B to Cdk3 required for efficient cell cycle progression in an Rb-E2F dependent manner in human GB cells.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , División Celular , Transducción de Señal , Puntos de Control del Ciclo Celular , Ciclo Celular/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo
6.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894767

RESUMEN

Cancer stem cells exhibit self-renewal, tumorigenesis, and a high differentiation potential. These cells have been detected in every type of cancer, and different signaling pathways can regulate their maintenance and proliferation. Androgen receptor signaling plays a relevant role in the pathophysiology of prostate cancer, promoting cell growth and differentiation processes. However, in the case of prostate cancer stem cells, the androgen receptor negatively regulates their maintenance and self-renewal. On the other hand, there is evidence that androgen receptor activity positively regulates the generation of cancer stem cells in other types of neoplasia, such as breast cancer or glioblastoma. Thus, the androgen receptor role in cancer stem cells depends on the cellular context. We aimed to analyze androgen receptor signaling in the maintenance and self-renewal of different types of cancer stem cells and its action on the expression of transcription factors and surface markers associated with stemness.


Asunto(s)
Células Madre Neoplásicas , Neoplasias de la Próstata , Receptores Androgénicos , Humanos , Masculino , Línea Celular Tumoral , Progresión de la Enfermedad , Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal
7.
Viruses ; 15(10)2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37896843

RESUMEN

BACKGROUND: Scarce data exist that analyze the outcomes of hematological patients with SARS-CoV-2 infection during the Omicron variant period who received treatment with remdesivir or nirmatrelvir/ritonavir. METHODS: This study aims to address this issue by using a retrospective observational registry, created by the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group, spanning from 27 December 2021 to 30 April 2023. RESULTS: This study included 466 patients, 243 (52%) who were treated with remdesivir and 223 (48%) with nirmatrelvir/ritonavir. Nirmatrelvir/ritonavir was primarily used for mild cases, resulting in a lower COVID-19-related mortality rate (1.3%), while remdesivir was preferred for moderate to severe cases (40%), exhibiting a higher mortality rate (9%). A multivariate analysis in the remdesivir cohort showed that male gender (odds ratio (OR) 0.35, p = 0.042) correlated with a lower mortality risk, while corticosteroid use (OR 9.4, p < 0.001) and co-infection (OR 2.8, p = 0.047) were linked to a higher mortality risk. Prolonged virus shedding was common, with 52% of patients shedding the virus for more than 25 days. In patients treated with remdesivir, factors associated with prolonged shedding included B-cell malignancy as well as underlying disease, severe disease, a later onset of and shorter duration of remdesivir treatment and a higher baseline viral load. Nirmatrelvir/ritonavir demonstrated a comparable safety profile to remdesivir, despite a higher risk of drug interactions. CONCLUSIONS: Nirmatrelvir/ritonavir proved to be a safe and effective option for treating mild cases in the outpatient setting, while remdesivir was preferred for severe cases, where corticosteroids and co-infection significantly predicted worse outcomes. Despite antiviral therapy, prolonged shedding remains a matter of concern.


Asunto(s)
COVID-19 , Coinfección , Humanos , Masculino , Estudios Retrospectivos , Ritonavir/uso terapéutico , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/uso terapéutico
8.
Oncol Lett ; 25(6): 223, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37153033

RESUMEN

Glioblastomas are the most aggressive and common primary brain tumors in adults. Glioblastoma cells have a great capacity to migrate and invade the brain parenchyma, often reaching the contralateral hemisphere. Progesterone (P4) and its metabolite, allopregnanolone (3α-THP), promote the migration and invasion of human glioblastoma-derived cells. P4 induces migration in glioblastoma cells by the activation of the proto-oncogene tyrosine-protein kinase Src (cSrc) and focal adhesion kinase (Fak). In breast cancer cells, cSrc and Fak promote invasion by increasing the expression and activation of extracellular matrix metalloproteinases (MMPs). However, the mechanism of action by which P4 and 3a-THP promote invasion in glioblastoma cells remains unclear. The effects of P4 and 3α-THP on the protein expression levels of MMP-2 and -9 and the participation of cSrc in progestin effects in U251 and U87 human glioblastoma-derived cells were evaluated. It was determined by western blotting that the P4 increased the protein expression level of MMP-9 in U251 and U87 cells, and 3α-THP increased the protein expression level of MMP-9 in U87 cells. None of these progestins modified MMP-2 protein expression levels. The increase in MMP-9 expression was reduced when the intracellular progesterone receptor and cSrc expression were blocked with small interfering RNAs. Cell invasion induced by P4 and 3α-THP was also blocked by inhibiting cSrc activity with PP2 or by cSrc gene silencing. These results suggest that P4 and its metabolite 3α-THP induce the invasion of glioblastoma cells by increasing MMP-9 expression through the cSrc kinase family. The results of this study provide information of interest in the context of targeted therapies against molecular pathways involved in glioblastoma invasion.

9.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047828

RESUMEN

Polycystic ovary syndrome (PCOS) is an endocrine disease associated with infertility and metabolic disorders in reproductive-aged women. In this study, we evaluated the expression of eight genes related to endometrial function and their DNA methylation levels in the endometrium of PCOS patients and women without the disease (control group). In addition, eight of the PCOS patients underwent intervention with metformin (1500 mg/day) and a carbohydrate-controlled diet (type and quantity) for three months. Clinical and metabolic parameters were determined, and RT-qPCR and MeDIP-qPCR were used to evaluate gene expression and DNA methylation levels, respectively. Decreased expression levels of HOXA10, GAB1, and SLC2A4 genes and increased DNA methylation levels of the HOXA10 promoter were found in the endometrium of PCOS patients compared to controls. After metformin and nutritional intervention, some metabolic and clinical variables improved in PCOS patients. This intervention was associated with increased expression of HOXA10, ESR1, GAB1, and SLC2A4 genes and reduced DNA methylation levels of the HOXA10 promoter in the endometrium of PCOS women. Our preliminary findings suggest that metformin and a carbohydrate-controlled diet improve endometrial function in PCOS patients, partly by modulating DNA methylation of the HOXA10 gene promoter and the expression of genes implicated in endometrial receptivity and insulin signaling.


Asunto(s)
Metformina , Síndrome del Ovario Poliquístico , Humanos , Femenino , Adulto , Metformina/farmacología , Metformina/uso terapéutico , Metformina/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/complicaciones , Metilación de ADN , Endometrio/metabolismo , Expresión Génica , Dieta
10.
Bone Marrow Transplant ; 58(5): 567-580, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36854892

RESUMEN

The kinetics of SARS-CoV-2 reactive IgG antibodies after full vaccination and booster in allogeneic and autologous stem cell transplantation (allo-HSCT, ASCT) and chimeric antigen receptor T-cell therapy (CAR-T) are of utmost importance for estimating risk of infection. A prospective multicenter registry-based cohort study, conducted from December 2020 to July 2022 was used to analyze antibody waning over time, booster effect and the relationship of antibody response and breakthrough infection in 572 recipients (429 allo-HSCT, 121 ASCT and 22 CAR-T cell therapy). A significant decline in antibody titers was observed at 3 and 6 months after full vaccination in recipients without pre-vaccine SARS-CoV-2 infection, whereas recipients infected prior to vaccination showed higher and stable antibody titers over time. In poor responders, a booster dose was able to increase antibody titers in 83% of allo-HSCT and 58% of ASCT recipients but not in CART-T cell recipients [0%] (p < 0.01). One-year cumulative incidence of breakthrough infection was 15%, similar among cell therapy procedures. Immunosuppressive drugs at the time of vaccination [hazard ratio (HR) 1.81, p = 0.0028] and reduced intensity conditioning (HR 0.49, p = 0.011) were identified as the only conditions associated with different risk of breakthrough infection in allo-HSCT recipients. Antibody titers were associated with breakthrough infection and disease severity. No death was observed among the 72 breakthrough infections. Antibody level decay after the first two vaccine doses was common except in recipients with pre-vaccination SARS-CoV-2 infection. Poorly responding allo-HSCT recipients showed a response advantage with the booster as compared to ASCT and, especially, the null response found in CAR-T cell recipients. Antibody titers were positively correlated with the risk of breakthrough SARS-CoV-2 infection which was mainly driven by the immunosuppression status.


Asunto(s)
COVID-19 , Trasplante de Células Madre Hematopoyéticas , Receptores Quiméricos de Antígenos , Humanos , SARS-CoV-2 , Estudios de Cohortes , Estudios Prospectivos , Trasplante Autólogo , Anticuerpos Antivirales , Vacunación , Infección Irruptiva , Tratamiento Basado en Trasplante de Células y Tejidos , Receptores de Trasplantes
11.
Reprod Biol ; 23(1): 100734, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36773450

RESUMEN

Cellular senescence (CS) is defined as a state of terminal proliferation arrest accompanied by morphological alterations, pro-inflammatory phenotype, and metabolic changes. In recent years, the implications of senescence in numerous physiological and pathological conditions such as development, tissue repair, aging, or cancer have been evident. Some inductors of senescence are tissue repair pathways, telomere shortening, DNA damage, degenerative disorders, and wound healing. Lately, it has been demonstrated that CS plays a decisive role in the development and progression of healthy pregnancy and labor. Premature maternal-fetal tissues senescence (placenta, choriamniotic membranes, and endothelium) is implicated in many adverse pregnancy outcomes, including fetal growth restriction, preeclampsia, preterm birth, and intrauterine fetal death. Here we discuss cellular senescence and its association with normal pregnancy development and adverse pregnancy outcomes. Current evidence allows us to establish the relevance of CS in processes associated with the appropriate development of placentation, the progression of pregnancy, and the onset of labor; likewise, it allows us to understand the undeniable participation of CS deregulation in pathological processes associated with pregnancy.


Asunto(s)
Trabajo de Parto , Nacimiento Prematuro , Recién Nacido , Embarazo , Humanos , Femenino , Nacimiento Prematuro/metabolismo , Placenta/metabolismo , Senescencia Celular/fisiología , Resultado del Embarazo
12.
Blood Cancer J ; 13(1): 8, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36599843

RESUMEN

The long-term clinical efficacy of SARS-CoV-2 vaccines according to antibody response in immunosuppressed patients such as hematological patients has been little explored. A prospective multicenter registry-based cohort study conducted from December 2020 to July 2022 by the Spanish Transplant and Cell Therapy group, was used to analyze the relationship of antibody response over time after full vaccination (at 3-6 weeks, 3, 6 and 12 months) (2 doses) and of booster doses with breakthrough SARS-CoV-2 infection in 1551 patients with hematological disorders. At a median follow-up of 388 days after complete immunization, 266 out of 1551 (17%) developed breakthrough SARS-CoV-2 infection at median of 86 days (range 7-391) after full vaccination. The cumulative incidence was 18% [95% confidence interval (C.I.), 16-20%]. Multivariate analysis identified higher incidence in chronic lymphocytic leukemia patients (29%) and with the use of corticosteroids (24.5%), whereas female sex (15.5%) and more than 1 year after last therapy (14%) were associated with a lower incidence (p < 0.05 for all comparisons). Median antibody titers at different time points were significantly lower in breakthrough cases than in non-cases. A serological titer cut-off of 250 BAU/mL was predictive of breakthrough infection and its severity. SARS-CoV-2 infection-related mortality was encouragingly low (1.9%) in our series. Our study describes the incidence of and risk factors for COVID-19 breakthrough infections during the initial vaccination and booster doses in the 2021 to mid-2022 period. The level of antibody titers at any time after 2-dose vaccination is strongly linked with protection against both breakthrough infection and severe disease, even with the Omicron SARS-CoV-2 variant.


Asunto(s)
COVID-19 , Humanos , Femenino , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Estudios de Cohortes , Estudios Prospectivos
13.
Oncol Lett ; 24(5): 397, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36276488

RESUMEN

Glioblastoma (GB) is the most frequent primary brain tumor with a very poor prognosis. Sex hormones are crucial players in the development of GBs. 17 ß-estradiol (E2) signaling is involved through its corresponding intracellular receptors [estrogen receptor α (ERα) and ß (ERß)] in GB cell proliferation and progression. E2 activates G-protein coupled estrogen receptor (GPER), leading to rapidly occurring effects, independently of gene transcription. GPER activation is involved in tumor progression in various cancer types. Currently, available data concerning the occurrence and role of GPER in GB are very limited. In the present study, it was observed that GPER was expressed in human brain tumor cell lines [U251 (astrocytoma-derived cell line), U87, LN229 and T98 (glioblastoma-derived cell line)]. Immunofluorescence assays revealed that GPER localizes in the plasma membrane, cytoplasm and nucleus. An in silico analysis identified two potential E2 response elements in the promoter region of the GPER gene. E2 increased GPER expression in the U251, U87 and LN229 cell lines. Molecular modeling data derived from in silico analysis predicted the three-dimensional conformation of GPER, and docking analysis identified potential binding sites of E2 and its specific agonist, G1. Taken together, these results indicate that GPER may be differentially expressed in human GB cell lines with E2 possibly upregulating GPER expression. The present study raises further questions about the implications of GPER-mediated E2 signaling in the biology of GBs.

14.
Biomolecules ; 12(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-36008950

RESUMEN

Despite of the capacity that several drugs have for specific inhibition of the androgen receptor (AR), in most cases, PCa progresses to an androgen-independent stage. In this context, the development of new targeted therapies for prostate cancer (PCa) has remained as a challenge. To overcome this issue, new tools, based on nucleic acids technology, have been developed. Aptamers are small oligonucleotides with a three-dimensional structure capable of interacting with practically any desired target, even large targets such as mammalian cells or viruses. Recently, aptamers have been studied for treatment and detection of many diseases including cancer. In PCa, numerous works have reported their use in the development of new approaches in diagnostics and treatment strategies. Aptamers have been joined with drugs or other specific molecules such as silencing RNAs (aptamer-siRNA chimeras) to specifically reduce the expression of oncogenes in PCa cells. Even though these studies have shown good results in the early stages, more research is still needed to demonstrate the clinical value of aptamers in PCa. The aim of this review was to compile the existing scientific literature regarding the use of aptamers in PCa in both diagnosis and treatment studies. Since Prostate-Specific Membrane Antigen (PSMA) aptamers are the most studied type of aptamers in this field, special emphasis was given to these aptamers.


Asunto(s)
Neoplasias de la Próstata , Andrógenos , Animales , Humanos , Masculino , Mamíferos , Oligonucleótidos , Neoplasias de la Próstata/metabolismo , ARN Interferente Pequeño
15.
Cells ; 11(12)2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35741094

RESUMEN

The nuclear progesterone receptor (PR) is mainly known for its role as a ligand-regulated transcription factor. However, in the last ten years, this receptor's extranuclear or rapid actions have gained importance in the context of physiological and pathophysiological conditions such as cancer. The PR's polyproline (PXPP) motif allows protein-protein interaction through SH3 domains of several cytoplasmatic proteins, including the Src family kinases (SFKs). Among members of this family, cSrc is the most well-characterized protein in the scenario of rapid actions of the PR in cancer. Studies in breast cancer have provided the most detailed information on the signaling and effects triggered by the cSrc-PR interaction. Nevertheless, the study of this phenomenon and its consequences has been underestimated in other types of malignancies, especially those not associated with the reproductive system, such as glioblastomas (GBs). This review will provide a detailed analysis of the impact of the PR-cSrc interplay in the progression of some non-reproductive cancers, particularly, in GBs.


Asunto(s)
Neoplasias de la Mama , Receptores de Progesterona , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Progesterona , Proteínas Tirosina Quinasas/metabolismo , Receptores de Progesterona/metabolismo , Familia-src Quinasas/metabolismo
16.
Steroids ; 184: 109040, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35526781

RESUMEN

PGRMC is a non-classical receptor that mediates the non-genomic responses to progesterone and is distributed in different subcellular compartments. PGRMC belongs to the membrane-associated progesterone receptor (MAPR) family. Two PGRMC subtypes (PGRMC1 and PGRMC2) have been characterized, and both are expressed in the human endometrium. PGRMC expression is differentially regulated during the menstrual cycle in the human endometrium. Although PGRMC1 is predominantly expressed in the proliferative phase and PGRMC2 in the secretory phase, this expression changes in pathologies such as endometriosis, in which PGRMC2 expression considerably decreases, promoting progesterone resistance. In endometrial cancer, PGRMC1 is overexpressed, its activation induces tumors growth, and confers chemoresistance in the presence of progesterone. Thus, PGRMCs play a key role in progesterone actions in the endometrium.


Asunto(s)
Endometrio , Proteínas de la Membrana , Receptores de Progesterona , Enfermedades Uterinas , Endometrio/patología , Endometrio/fisiología , Femenino , Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/patología
17.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563388

RESUMEN

Glioblastomas (GBs) are the most aggressive and common primary malignant brain tumors. Steroid hormone progesterone (P4) and its neuroactive metabolites, such as allopregnanolone (3α-THP) are synthesized by neural, glial, and malignant GB cells. P4 promotes cellular proliferation, migration, and invasion of human GB cells at physiological concentrations. It has been reported that 3α-THP promotes GB cell proliferation. Here we investigated the effects of 3α-THP on GB cell migration and invasion, the participation of the enzymes involved in its metabolism (AKR1C1-4), and the role of the c-Src kinase in 3α-THP effects in GBs. 3α-THP 100 nM promoted migration and invasion of U251, U87, and LN229 human-derived GB cell lines. We observed that U251, LN229, and T98G cell lines exhibited a higher protein content of AKR1C1-4 than normal human astrocytes. AKR1C1-4 silencing did not modify 3α-THP effects on migration and invasion. 3α-THP activated c-Src protein at 10 min (U251 cells) and 15 min (U87 and LN229 cells). Interestingly, the pharmacological inhibition of c-Src decreases the promoting effects of 3α-THP on cell migration and invasion. Together, these data indicate that 3α-THP promotes GB migration and invasion through c-Src activation.


Asunto(s)
Proteína Tirosina Quinasa CSK , Glioblastoma , Pregnanolona , Proteína Tirosina Quinasa CSK/metabolismo , Proliferación Celular , Glioblastoma/metabolismo , Humanos , Pregnanolona/metabolismo , Pregnanolona/farmacología , Proteínas Tirosina Quinasas
18.
Front Endocrinol (Lausanne) ; 13: 703733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197928

RESUMEN

Glioblastomas (GBM) are the most frequent and aggressive brain tumors. 17ß-estradiol (E2) increases proliferation, migration, and invasion of human GBM cells; however underlying mechanisms are no fully understood. Zeste 2 Enhancer Homologous enzyme (EZH2) is a methyltransferase part of Polycomb 2 repressor complex (PRC2). In GBM, EZH2 is overexpressed and involved in the cell cycle, migration, and invasion processes. We studied the role of EZH2 in the pro-oncogenic actions of E2 in human GBM cells. EZH2 gene silencing and pharmacological inhibition of EZH2 blocked proliferation, migration, and invasion of GBM cells induced by E2. We identified in silico additional putative estrogen response elements (EREs) at the EZH2 promoter, but E2 did not modify EZH2 expression. In silico analysis also revealed that among human GBM samples, EZH2 expression was homogeneous; in contrast, the heterogeneous expression of estrogen receptors (ERs) allowed the classification of the samples into groups. Even in the GBM cluster with high expression of ERs and those of their target genes, the expression of PCR2 target genes did not change. Overall, our data suggest that in GBM cells, pro-oncogenic actions of E2 are mediated by EZH2, without changes in EZH2 expression and by mechanisms that appear to be unrelated to the transcriptional activity of ERs.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Glioblastoma , Movimiento Celular/genética , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Estradiol/farmacología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos
19.
Reproduction ; 163(5): R81-R96, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35195535

RESUMEN

Microbiome or microbiota is essential to regulate many mammalian physiological processes, including reproduction. Like other organs or tissues, the upper female reproductive tract used to be considered as devoid of microorganisms; however, a non-infection-related bacterial community was discovered in the uterus from humans and other mammals, and its composition is related to reproductive success. The dysbiosis of endometrial microbiota is associated with benign and malign uterine diseases. Hence, this review addressed the current knowledge about uterine microbiota alterations and their association with common endometrial diseases, including endometrial polyposis, endometriosis, uterine myomatosis, endometrial hyperplasia, and endometrial cancer. There is a specific bacterial community in the endometrium in the most-analyzed uterine diseases. However, the constant finding consists in a reduced abundance of Firmicutes and Lactobacillus, while there is an increased abundance of Proteobacteria (such as Escherichia coli and Enterococcus), Bacteroidetes (Prevotella, for example), and Actinobacteria (as Gardnerella), in contrast to healthy endometrium. Besides, we discussed the future usefulness of the endometrial microbiota components as biomarkers to diagnose uterine diseases and their probable clinical outcomes. In addition, we analyzed their potential use as probiotics since they could provide an alternative or complement to existing therapies.


Asunto(s)
Endometriosis , Microbiota , Enfermedades Uterinas , Animales , Endometrio/microbiología , Femenino , Humanos , Mamíferos , Microbiota/fisiología , Útero/microbiología
20.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614002

RESUMEN

Allopregnanolone (3α-THP) has been one of the most studied progesterone metabolites for decades. 3α-THP and its synthetic analogs have been evaluated as therapeutic agents for pathologies such as anxiety and depression. Enzymes involved in the metabolism of 3α-THP are expressed in classical and nonclassical steroidogenic tissues. Additionally, due to its chemical structure, 3α-THP presents high affinity and agonist activity for nuclear and membrane receptors of neuroactive steroids and neurotransmitters, such as the Pregnane X Receptor (PXR), membrane progesterone receptors (mPR) and the ionotropic GABAA receptor, among others. 3α-THP has immunomodulator and antiapoptotic properties. It also induces cell proliferation and migration, all of which are critical processes involved in cancer progression. Recently the study of 3α-THP has indicated that low physiological concentrations of this metabolite induce the progression of several types of cancer, such as breast, ovarian, and glioblastoma, while high concentrations inhibit it. In this review, we explore current knowledge on the metabolism and mechanisms of action of 3α-THP in normal and tumor cells.


Asunto(s)
Neoplasias , Pregnanolona , Humanos , Hormonas Esteroides Gonadales , Pregnanolona/farmacología , Progesterona/metabolismo , Receptores de Progesterona , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA