Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750793

RESUMEN

Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Humanos , Biología Computacional/métodos , Cristalografía por Rayos X , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Motivos de Unión al ARN/genética
2.
Nat Commun ; 14(1): 4445, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488098

RESUMEN

RAD51C is an enigmatic predisposition gene for breast, ovarian, and prostate cancer. Currently, missing structural and related functional understanding limits patient mutation interpretation to homology-directed repair (HDR) function analysis. Here we report the RAD51C-XRCC3 (CX3) X-ray co-crystal structure with bound ATP analog and define separable RAD51C replication stability roles informed by its three-dimensional structure, assembly, and unappreciated polymerization motif. Mapping of cancer patient mutations as a functional guide confirms ATP-binding matching RAD51 recombinase, yet highlights distinct CX3 interfaces. Analyses of CRISPR/Cas9-edited human cells with RAD51C mutations combined with single-molecule, single-cell and biophysics measurements uncover discrete CX3 regions for DNA replication fork protection, restart and reversal, accomplished by separable functions in DNA binding and implied 5' RAD51 filament capping. Collective findings establish CX3 as a cancer-relevant replication stress response complex, show how HDR-proficient variants could contribute to tumor development, and identify regions to aid functional testing and classification of cancer mutations.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Recombinasa Rad51 , Mutación , Replicación del ADN , Adenosina Trifosfato , Proteínas de Unión al ADN
3.
Prog Biophys Mol Biol ; 163: 143-159, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33675849

RESUMEN

Human uracil DNA-glycosylase (UDG) is the prototypic and first identified DNA glycosylase with a vital role in removing deaminated cytosine and incorporated uracil and 5-fluorouracil (5-FU) from DNA. UDG depletion sensitizes cells to high APOBEC3B deaminase and to pemetrexed (PEM) and floxuridine (5-FdU), which are toxic to tumor cells through incorporation of uracil and 5-FU into DNA. To identify small-molecule UDG inhibitors for pre-clinical evaluation, we optimized biochemical screening of a selected diversity collection of >3,000 small-molecules. We found aurintricarboxylic acid (ATA) as an inhibitor of purified UDG at an initial calculated IC50 < 100 nM. Subsequent enzymatic assays confirmed effective ATA inhibition but with an IC50 of 700 nM and showed direct binding to the human UDG with a KD of <700 nM. ATA displays preferential, dose-dependent binding to purified human UDG compared to human 8-oxoguanine DNA glycosylase. ATA did not bind uracil-containing DNA at these concentrations. Yet, combined crystal structure and in silico docking results unveil ATA interactions with the DNA binding channel and uracil-binding pocket in an open, destabilized UDG conformation. Biologically relevant ATA inhibition of UDG was measured in cell lysates from human DLD1 colon cancer cells and in MCF-7 breast cancer cells using a host cell reactivation assay. Collective findings provide proof-of-principle for development of an ATA-based chemotype and "door stopper" strategy targeting inhibitor binding to a destabilized, open pre-catalytic glycosylase conformation that prevents active site closing for functional DNA binding and nucleotide flipping needed to excise altered bases in DNA.


Asunto(s)
Reparación del ADN , Uracil-ADN Glicosidasa , Dominio Catalítico , Citidina Desaminasa , Daño del ADN , Humanos , Antígenos de Histocompatibilidad Menor , Uracilo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
4.
Prog Biophys Mol Biol ; 163: 130-142, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33115610

RESUMEN

Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven "undruggable", Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with ∼50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or "undruggable" targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of ∼2-8% and crystal structures from ∼1.8 to 3.2 Å. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1).


Asunto(s)
Descubrimiento de Drogas , Preparaciones Farmacéuticas , Cristalografía por Rayos X , Daño del ADN , Reparación del ADN
5.
Proc Natl Acad Sci U S A ; 117(25): 14127-14138, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32522879

RESUMEN

Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene ERCC5 lead to either of two distinct human diseases: Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG's role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation. Furthermore, XPG DNA binding elements conserved with FEN1 superfamily members enable insights on DNA interactions. Notably, all but one of the known pathogenic point mutations map to XPGcat, and both XP-G and XP-G/CS mutations destabilize XPG and reduce its cellular protein levels. Mapping the distinct mutation classes provides structure-based predictions for disease phenotypes: Residues mutated in XP-G are positioned to reduce local stability and NER activity, whereas residues mutated in XP-G/CS have implied long-range structural defects that would likely disrupt stability of the whole protein, and thus interfere with its functional interactions. Combined data from crystallography, biochemistry, small angle X-ray scattering, and electron microscopy unveil an XPG homodimer that binds, unstacks, and sculpts duplex DNA at internal unpaired regions (bubbles) into strongly bent structures, and suggest how XPG complexes may bind both NER bubble junctions and replication forks. Collective results support XPG scaffolding and DNA sculpting functions in multiple DDR processes to maintain genome stability.


Asunto(s)
Síndrome de Cockayne/genética , Proteínas de Unión al ADN/química , Endonucleasas/química , Proteínas Nucleares/química , Mutación Puntual , Factores de Transcripción/química , Xerodermia Pigmentosa/genética , Sitios de Unión , Secuencia Conservada , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Estabilidad de Enzimas , Humanos , Simulación de Dinámica Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Unión Proteica , Pliegue de Proteína , Multimerización de Proteína , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Methods Enzymol ; 601: 205-241, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29523233

RESUMEN

For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity. Appropriate biochemical and cell assays provide quantitative measurements, and for biomedical impacts, any inhibitor's activity should be validated in human cells. Specificity is effectively shown empirically by testing if mutations blocking target activity remove cellular inhibitor impact. We propose this approach to be superior to experiments testing for lack of cross-reactivity among possible related enzymes, which is a challenging negative experiment. As an exemplary avatar system for protein and DNA allosteric conformational controls, we focus here on developing separation-of-function inhibitors for meiotic recombination 11 nuclease activities. This was achieved not by targeting the active site but rather by geometrically impacting loop motifs analogously to ribosome antibiotics. These loops are neighboring the dimer interface and active site act in sculpting dsDNA and ssDNA into catalytically competent complexes. One of our design constraints is to preserve DNA substrate binding to geometrically block competing enzymes and pathways from the damaged site. We validate our allosteric approach to controlling outcomes in human cells by reversing the radiation sensitivity and genomic instability in BRCA mutant cells.


Asunto(s)
Diseño de Fármacos , Proteína Homóloga de MRE11/antagonistas & inhibidores , Regulación Alostérica , Secuencia de Aminoácidos , Endonucleasas/antagonistas & inhibidores , Endonucleasas/metabolismo , Evolución Molecular , Exonucleasas/antagonistas & inhibidores , Exonucleasas/metabolismo , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Conformación Proteica , Sensibilidad y Especificidad , Alineación de Secuencia , Análisis de Secuencia de Proteína
7.
Nat Commun ; 8: 15855, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28653660

RESUMEN

DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via 'phosphate steering', basic residues energetically steer an inverted ss 5'-flap through a gateway over FEN1's active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5'-flap specificity and catalysis, preventing genomic instability.


Asunto(s)
ADN/genética , Endonucleasas de ADN Solapado/metabolismo , Inestabilidad Genómica , Fosfatos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , ADN/química , ADN/metabolismo , Reparación del ADN , Replicación del ADN , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/genética , Humanos , Mutación , Fosfatos/química , Alineación de Secuencia , Especificidad por Sustrato
8.
Mol Microbiol ; 99(4): 674-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26508112

RESUMEN

The motor of the membrane-anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30 nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP in vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C-terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide-regulated FlaH binding to FlaI form the archaellar basal body core.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Flagelos/fisiología , Nucleótidos/metabolismo , Sulfolobus acidocaldarius/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Arqueales/fisiología , Cristalización , Cristalografía por Rayos X , Flagelina/metabolismo , Genes Arqueales , Microscopía Electrónica , Modelos Moleculares , Movimiento , Sulfolobus acidocaldarius/genética
9.
EMBO Rep ; 15(5): 601-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24714598

RESUMEN

The post-translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin-like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO-modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome-targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome-targeting is crucially required for the repair of TRF2-depleted dysfunctional telomeres by 53BP1-mediated non-homologous end joining.


Asunto(s)
Reparación del ADN , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Nucleosomas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/ultraestructura , Secuencias de Aminoácidos , Animales , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Técnicas de Inactivación de Genes , Ratones , Proteínas Nucleares/genética , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Telómero/efectos de los fármacos , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Factores de Transcripción/genética , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas , Ubiquitinación
10.
Mol Cell ; 47(1): 50-60, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22658721

RESUMEN

Nucleotide excision repair (NER) has long been known to remove DNA lesions induced by chemical carcinogens, and the molecular mechanism has been partially elucidated. Here we demonstrate that in Schizosaccharomyces pombe a DNA recognition protein, alkyltransferase-like 1 (Atl1), can play a pivotal role in selecting a specific NER pathway, depending on the nature of the DNA modification. The relative ease of dissociation of Atl1 from DNA containing small O(6)-alkylguanines allows accurate completion of global genome repair (GGR), whereas strong Atl1 binding to bulky O(6)-alkylguanines blocks GGR, stalls the transcription machinery, and diverts the damage to transcription-coupled repair. Our findings redraw the initial stages of the NER process in those organisms that express an alkyltransferase-like gene and raise the question of whether or not O(6)-alkylguanine lesions that are poor substrates for the alkyltransferase proteins in higher eukaryotes might, by analogy, signal such lesions for repair by NER.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Reparación del ADN , Guanina/análogos & derivados , Proteínas de Schizosaccharomyces pombe/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Western Blotting , Cristalografía por Rayos X , Daño del ADN , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Citometría de Flujo , Fase G1/efectos de los fármacos , Genoma Fúngico/genética , Guanina/química , Guanina/metabolismo , Metilnitronitrosoguanidina/toxicidad , Modelos Moleculares , Mutación , Compuestos de Nitrosourea/toxicidad , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Transcripción Genética/genética
11.
Nat Struct Mol Biol ; 18(4): 423-31, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21441914

RESUMEN

The Rad50 ABC-ATPase complex with Mre11 nuclease is essential for dsDNA break repair, telomere maintenance and ataxia telangiectasia-mutated kinase checkpoint signaling. How Rad50 affects Mre11 functions and how ABC-ATPases communicate nucleotide binding and ligand states across long distances and among protein partners are questions that have remained obscure. Here, structures of Mre11-Rad50 complexes define the Mre11 2-helix Rad50 binding domain (RBD) that forms a four-helix interface with Rad50 coiled coils adjoining the ATPase core. Newly identified effector and basic-switch helix motifs extend the ABC-ATPase signature motif to link ATP-driven Rad50 movements to coiled coils binding Mre11, implying an ~30-Å pull on the linker to the nuclease domain. Both RBD and basic-switch mutations cause clastogen sensitivity. Our new results characterize flexible ATP-dependent Mre11 regulation, defects in cancer-linked RBD mutations, conserved superfamily basic switches and motifs effecting ATP-driven conformational change, and they provide a unified comprehension of ABC-ATPase activities.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Arqueales/metabolismo , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Sitios de Unión , Endodesoxirribonucleasas/química , Exodesoxirribonucleasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas de Schizosaccharomyces pombe/química , Homología de Secuencia de Aminoácido
12.
J Biol Chem ; 285(41): 31581-9, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20659888

RESUMEN

Inducible nitric-oxide synthase (iNOS) produces biologically stressful levels of nitric oxide (NO) as a potent mediator of cellular cytotoxicity or signaling. Yet, how this nitrosative stress affects iNOS function in vivo is poorly understood. Here we define two specific non-heme iNOS nitrosation sites discovered by combining UV-visible spectroscopy, chemiluminescence, mass spectrometry, and x-ray crystallography. We detected auto-S-nitrosylation during enzymatic turnover by using chemiluminescence. Selective S-nitrosylation of the ZnS(4) site, which bridges the dimer interface, promoted a dimer-destabilizing order-to-disorder transition. The nitrosated iNOS crystal structure revealed an unexpected N-NO modification on the pterin cofactor. Furthermore, the structurally defined N-NO moiety is solvent-exposed and available to transfer NO to a partner. We investigated glutathione (GSH) as a potential transnitrosation partner because the intracellular GSH concentration is high and NOS can form S-nitrosoglutathione. Our computational results predicted a GSH binding site adjacent to the N-NO-pterin. Moreover, we detected GSH binding to iNOS with saturation transfer difference NMR spectroscopy. Collectively, these observations resolve previous paradoxes regarding this uncommon pterin cofactor in NOS and suggest means for regulating iNOS activity via N-NO-pterin and S-NO-Cys modifications. The iNOS self-nitrosation characterized here appears appropriate to help control NO production in response to cellular conditions.


Asunto(s)
Cisteína/química , Glutatión/química , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico/química , Multimerización de Proteína/fisiología , Pterinas/química , Regulación Alostérica/fisiología , Animales , Cristalografía por Rayos X , Cisteína/metabolismo , Glutatión/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Estructura Cuaternaria de Proteína , Pterinas/metabolismo
13.
Nature ; 459(7248): 808-13, 2009 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-19516334

RESUMEN

Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Daño del ADN , Reparación del ADN , Alquilación , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
14.
Nat Chem Biol ; 4(11): 700-7, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18849972

RESUMEN

Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low concentrations and a defensive cytotoxin at higher concentrations. The high active site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock and cancer. Our crystal structures and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a new specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents toward remote specificity pockets, which become accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active site conservation.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Aminopiridinas/química , Aminopiridinas/farmacología , Animales , Bovinos , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Expresión Génica , Humanos , Isoenzimas/antagonistas & inhibidores , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Quinazolinas/química , Quinazolinas/farmacología , Ratas
15.
Cell ; 133(5): 789-800, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18510924

RESUMEN

Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/genética , Sulfolobus acidocaldarius/enzimología , Proteína de la Xerodermia Pigmentosa del Grupo D/química , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteínas Arqueales/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Cristalografía por Rayos X , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
16.
EMBO J ; 22(17): 4566-76, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12941707

RESUMEN

To clarify RAD51 interactions controlling homologous recombination, we report here the crystal structure of the full-length RAD51 homolog from Pyrococcus furiosus. The structure reveals how RAD51 proteins assemble into inactive heptameric rings and active DNA-bound filaments matching three-dimensional electron microscopy reconstructions. A polymerization motif (RAD51-PM) tethers individual subunits together to form assemblies. Subunit interactions support an allosteric 'switch' promoting ATPase activity and DNA binding roles for the N-terminal domain helix-hairpin-helix (HhH) motif. Structural and mutational results characterize RAD51 interactions with the breast cancer susceptibility protein BRCA2 in higher eukaryotes. A designed P.furiosus RAD51 mutant binds BRC repeats and forms BRCA2-dependent nuclear foci in human cells in response to gamma-irradiation-induced DNA damage, similar to human RAD51. These results show that BRCA2 repeats mimic the RAD51-PM and imply analogous RAD51 interactions with RAD52 and RAD54. Both BRCA2 and RAD54 may act as antagonists and chaperones for RAD51 filament assembly by coupling RAD51 interface exchanges with DNA binding. Together, these structural and mutational results support an interface exchange hypothesis for coordinated protein interactions in homologous recombination.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Sitios de Unión/genética , Línea Celular , Cristalografía por Rayos X , ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Microscopía Electrónica , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Recombinasa Rad51 , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA