Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Commun Biol ; 7(1): 681, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831027

RESUMEN

Metabolic dysfunction-associated steatohepatitis (MASH), previously called non-alcoholic steatohepatitis (NASH), is a growing concern worldwide, with liver fibrosis being a critical determinant of its prognosis. Monocyte-derived macrophages have been implicated in MASH-associated liver fibrosis, yet their precise roles and the underlying differentiation mechanisms remain elusive. In this study, we unveil a key orchestrator of this process: long chain saturated fatty acid-Egr2 pathway. Our findings identify the transcription factor Egr2 as the driving force behind monocyte differentiation into hepatic lipid-associated macrophages (hLAMs) within MASH liver. Notably, Egr2-deficiency reroutes monocyte differentiation towards a macrophage subset resembling resident Kupffer cells, hampering hLAM formation. This shift has a profound impact, suppressing the transition from benign steatosis to liver fibrosis, demonstrating the critical pro-fibrotic role played by hLAMs in MASH pathogenesis. Long-chain saturated fatty acids that accumulate in MASH liver emerge as potent inducers of Egr2 expression in macrophages, a process counteracted by unsaturated fatty acids. Furthermore, oral oleic acid administration effectively reduces hLAMs in MASH mice. In conclusion, our work not only elucidates the intricate interplay between saturated fatty acids, Egr2, and monocyte-derived macrophages but also highlights the therapeutic promise of targeting the saturated fatty acid-Egr2 axis in monocytes for MASH management.


Asunto(s)
Diferenciación Celular , Proteína 2 de la Respuesta de Crecimiento Precoz , Cirrosis Hepática , Macrófagos , Monocitos , Enfermedad del Hígado Graso no Alcohólico , Animales , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Ratones , Monocitos/metabolismo , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Hígado/metabolismo , Hígado/patología , Antígenos Ly
2.
Cancer Sci ; 115(1): 59-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923388

RESUMEN

Sinus macrophages in draining lymph nodes (DLNs) are involved in anti-tumor immune reactions. CD169 (Sialoadhesin, Siglec-1) is expressed on sinus macrophages and is considered a surrogate marker for the immunostimulatory phenotype of macrophages. In this study, the significance of sinus macrophages in immunotherapy was evaluated using mouse models. Treatment with anti-programmed death-ligand 1 (PD-L1) antibody suppressed the subcutaneous tumor growth of MC38 and E0771 cells but was not effective against MB49 and LLC tumors. Decreased cytotoxic T-lymphocyte (CTL) infiltration in tumor tissues and CD169 expression in sinus macrophages were observed in MB49 and LLC cells compared to corresponding parameters in MC38 and E0771 cells. The anti-tumor effects of the anti-PD-L1 antibody on MC38 and E0771 cells were abolished when sinus macrophages in DLNs were depleted, suggesting that sinus macrophages are involved in the therapeutic effect of the anti-PD-L1 antibody. Naringin activated sinus macrophages. Naringin inhibited tumor growth in MB49- and LLC-bearing mice but did not affect that in MC38- and E0771-bearing mice. The infiltration of CTLs in tumor tissues and their activation were increased by naringin, and this effect was impaired when sinus macrophages were depleted. Combination therapy with naringin and anti-PD-L1 antibody suppressed MB49 tumor growth. In conclusion, CD169-positive sinus macrophages in DLNs are critical for anti-tumor immune responses, and naringin suppresses tumor growth by activating CD169-positive sinus macrophages and anti-tumor CTL responses. The activation status of sinus macrophages has been suggested to differ among tumor models, and this should be investigated in future studies.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Linfocitos T Citotóxicos/metabolismo , Anticuerpos/uso terapéutico , Inmunoterapia , Macrófagos/metabolismo , Antígeno B7-H1/metabolismo , Línea Celular Tumoral
3.
Int Immunol ; 36(4): 183-196, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147536

RESUMEN

In sarcoidosis, granulomas develop in multiple organs including the liver and lungs. Although mechanistic target of rapamycin complex 1 (mTORC1) activation in macrophages drives granuloma development in sarcoidosis by enhancing macrophage proliferation, little is known about the macrophage subsets that proliferate and mature into granuloma macrophages. Here, we show that aberrantly increased monocytopoiesis gives rise to granulomas in a sarcoidosis model, in which Tsc2, a negative regulator of mTORC1, is conditionally deleted in CSF1R-expressing macrophages (Tsc2csf1rΔ mice). In Tsc2csf1rΔ mice, common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs), common monocyte progenitors / monocyte progenitors (cMoPs / MPs), inducible monocyte progenitors (iMoPs), and Ly6Cint CX3CR1low CD14- immature monocytes (iMOs), but not monocyte-dendritic cell progenitors (MDPs) and common dendritic cell progenitors (CDPs), accumulated and proliferated in the spleen. Consistent with this, monocytes, neutrophils, and neutrophil-like monocytes increased in the spleens of Tsc2csf1rΔ mice, whereas dendritic cells did not. The adoptive transfer of splenic iMOs into wild-type mice gave rise to granulomas in the liver and lungs. In these target organs, iMOs matured into Ly6Chi classical monocytes/macrophages (cMOs). Giant macrophages (gMAs) also accumulated in the liver and lungs, which were similar to granuloma macrophages in expression of cell surface markers such as MerTK and SLAMF7. Furthermore, the gMA-specific genes were expressed in human macrophages from sarcoidosis skin lesions. These results suggest that mTORC1 drives granuloma development by promoting the proliferation of monocyte/neutrophil progenitors and iMOs predominantly in the spleen, and that proliferating iMOs mature into cMOs and then gMAs to give rise to granuloma after migration into the liver and lungs in sarcoidosis.


Asunto(s)
Macrófagos , Sarcoidosis , Ratones , Humanos , Animales , Diferenciación Celular , Macrófagos/metabolismo , Monocitos/metabolismo , Granuloma/metabolismo , Granuloma/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
4.
Biochem Biophys Res Commun ; 684: 149135, 2023 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-37879249

RESUMEN

Multiple myeloma displays the clonal B cell expansion and the overproduction of monoclonal immunoglobulins. Genetic translocations at 14q32, particularly with partners like 16q23, lead to the dysregulation of oncogene expression, including the significant enhancement of c-Maf. This aberrant expression of c-Maf has prompted research into strategies for targeting this transcription factor as a potential therapeutic avenue for multiple myeloma treatment. In this study, we introduce a screening pipeline to test small compounds for their ability to inhibit c-Maf. Using a luciferase indicator driven by the Ccl8 gene promoter, we identified two small compounds that inhibit transcriptional activity of c-Maf. These molecules impede the proliferation of c-Maf-expressing myeloma cells, and repress the expression of c-Maf target genes such as ITGB7 and CCR1. Importantly, these molecules target c-Maf-expressing multiple myeloma cells, but not c-Maf-negative myeloma cells, showing potential for tailoring therapeutic intervention. In conclusion, our screening pipeline is effective to explore leads for a novel c-Maf inhibitor for multiple myeloma therapy.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Proteínas Proto-Oncogénicas c-maf/genética , Proteínas Proto-Oncogénicas c-maf/metabolismo , Linfocitos B/metabolismo , Regulación de la Expresión Génica , Proliferación Celular
5.
Cell Rep ; 42(2): 112126, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36795561

RESUMEN

To disseminate through the body, Zika virus (ZIKV) is thought to exploit the mobility of myeloid cells, in particular monocytes and dendritic cells. However, the timing and mechanisms underlying shuttling of the virus by immune cells remains unclear. To understand the early steps in ZIKV transit from the skin, at different time points, we spatially mapped ZIKV infection in lymph nodes (LNs), an intermediary site en route to the blood. Contrary to prevailing hypotheses, migratory immune cells are not required for the virus to reach the LNs or blood. Instead, ZIKV rapidly infects a subset of sessile CD169+ macrophages in the LNs, which release the virus to infect downstream LNs. Infection of CD169+ macrophages alone is sufficient to initiate viremia. Overall, our experiments indicate that macrophages that reside in the LNs contribute to initial ZIKV spread. These studies enhance our understanding of ZIKV dissemination and identify another anatomical site for potential antiviral intervention.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Macrófagos , Monocitos/patología , Ganglios Linfáticos/patología
6.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35031565

RESUMEN

CD169+ macrophages reside in lymph node (LN) and spleen and play an important role in the immune defense against pathogens. As resident macrophages, they are responsive to environmental cues to shape their tissue-specific identity. We have previously shown that LN CD169+ macrophages require RANKL for formation of their niche and their differentiation. Here, we demonstrate that they are also dependent on direct lymphotoxin beta (LTß) receptor (R) signaling. In the absence or the reduced expression of either RANK or LTßR, their differentiation is perturbed, generating myeloid cells expressing SIGN-R1 in LNs. Conditions of combined haploinsufficiencies of RANK and LTßR revealed that both receptors contribute equally to LN CD169+ macrophage differentiation. In the spleen, the Cd169-directed ablation of either receptor results in a selective loss of marginal metallophilic macrophages (MMMs). Using a RANKL reporter mouse, we identify splenic marginal zone stromal cells as a source of RANKL and demonstrate that it participates in MMM differentiation. The loss of MMMs had no effect on the splenic B cell compartments but compromised viral capture and the expansion of virus-specific CD8+ T cells. Taken together, the data provide evidence that CD169+ macrophage differentiation in LN and spleen requires dual signals from LTßR and RANK with implications for the immune response.


Asunto(s)
Ganglios Linfáticos/inmunología , Receptor beta de Linfotoxina/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Transducción de Señal , Bazo/inmunología , Linfocitos B/inmunología , Ligando RANK/metabolismo , Células del Estroma/metabolismo
7.
Transl Oncol ; 15(1): 101306, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34883446

RESUMEN

Radiofrequency ablation (RFA) is a widely used and effective treatment for primary or metastatic liver cancer with small-size lesions. However, the therapeutic effectiveness of RFA in controlling metastatic lesion or recurrence is still limited. As the major cell population in tumor microenvironment (TME), macrophages have been reported to be recruited to RFA-treated lesion, but their roles are still unclear. Herein, we successfully established the mouse model mimicking RFA-induced abscopal effect, in which RFA eliminated the local orthotopic liver tumor but failed to control growth of distant tumor. Correspondently, RFA suppressed protumoral activation of local tumor-associated macrophages (TAMs), but failed to reprogram TAMs in distance. Importantly, although RFA led to reduced proportion of hepatic CD169+ macrophages in local and decreased expression of immune inhibitory molecules Tim-3 and PD-L1, these alterations were not observed for CD169+ macrophages in distant TME. Further RNA-seq and flow cytometry analysis showed that hepatic CD169+ macrophages contributed to reprograming TME through recruiting CD8+ T/NK cells and suppressing accumulation of MDSCs/Tregs. Consistently, depletion of CD169+ macrophages in CD169-DTR mouse greatly promoted liver tumor progression and largely dampened RFA-induced tumor suppression. Notably, transfer of CD169+ macrophages synergistically enhanced RFA-induced inhibition of distant tumor. To our knowledge, this is the first study which demonstrates hepatic CD169+ macrophages as a key factor responsible for RFA-induced abscopal effect. Our data suggest RFA with transfer of CD169+ macrophages as a promising combination therapy to lessen metastasis or recurrence of liver cancer in patients.

8.
Front Immunol ; 12: 663115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163472

RESUMEN

Systemic and local inflammation associated with therapeutic intervention of primary tumor occasionally promotes metastatic recurrence in mouse and human. However, it remains unclear what types of immune cells are involved in this process. Here, we found that the tissue-repair-promoting Ym1+Ly6Chi monocyte subset expanded as a result of systemic and local inflammation induced by intravenous injection of lipopolysaccharide or resection of primary tumor and promoted lung metastasis originating from circulating tumor cells (CTCs). Deletion of this subset suppressed metastasis induced by the inflammation. Furthermore, transfer of Ym1+Ly6Chi monocytes into naïve mice promoted lung metastasis in the mice. Ym1+Ly6Chi monocytes highly expressed matrix metalloproteinase-9 (MMP-9) and CXCR4. MMP-9 inhibitor and CXCR4 antagonist decreased Ym1+Ly6Chi-monocyte-promoted lung metastasis. These findings indicate that Ym1+Ly6Chi monocytes are therapeutic target cells for metastasis originating from CTCs associated with systemic and local inflammation. In addition, these findings provide a novel predictive cellular biomarker for metastatic recurrence after intervention for primary tumor.


Asunto(s)
Plasticidad de la Célula/inmunología , Inmunomodulación , Monocitos/inmunología , Monocitos/metabolismo , Neoplasias/etiología , Neoplasias/patología , Animales , Antígenos Ly/metabolismo , Biomarcadores de Tumor , Línea Celular Tumoral , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Inmunomodulación/genética , Inmunofenotipificación , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma Experimental , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neoplasias/metabolismo , Neoplasias/terapia , Receptores CXCR4/metabolismo
9.
J Leukoc Biol ; 109(3): 481-496, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32725843

RESUMEN

Neutrophils are generally considered as short-lived, homogenous, and terminally differentiated phagocytes that play crucial roles in conquering infection, although they occasionally cause severe collateral tissue damage or chronic inflammation. Recent reports have indicated that neutrophils also play a protective role in inflammation resolution and tissue repair. However, how terminally differentiated neutrophils have diverse functions remains unclear. Here, we show that neutrophils undergo conversion into Ly6G+ SiglecF+ double-positive cells expressing neurosupportive genes in the olfactory neuroepithelium (OE) under an inflammatory state. Through comprehensive flow cytometric analysis of murine nose, we identified Ly6G+ SiglecF+ double-positive cells that reside only in the OE under steady-state conditions. Double-positive cells were neutrophil-derived cells and increased by more than 10-fold during inflammation or tissue injury. We found that neutrophils infiltrate into the nose to express proinflammatory genes in the acute phase of inflammatory state, and they gradually change their surface markers and gene expression, expressing some neurogenesis-related genes in addition to inflammation related genes in the later phase. As the OE is known to have exceptionally high regeneration capacity as a nervous system, these findings suggest that neutrophils have the potential to contribute neurogenesis after conversion in peripheral nervous tissues, providing a challenge on a classic view of neutrophils as terminally differentiated leukocytes.


Asunto(s)
Antígenos Ly/metabolismo , Células Neuroepiteliales/citología , Neuronas/citología , Neutrófilos/inmunología , Bulbo Olfatorio/citología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Animales , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Recuento de Células , Proliferación Celular , Forma de la Célula , Eosinófilos/metabolismo , Femenino , Regulación de la Expresión Génica , Inflamación/patología , Ratones Endogámicos C57BL , Neurogénesis/genética , Nariz/patología
10.
Biochem Biophys Res Commun ; 533(4): 1290-1297, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33046244

RESUMEN

With-no-lysine kinase (WNK) plays important roles in regulating electrolyte homeostasis, cell signaling, survival, and proliferation. It has been recently demonstrated that WNK1, a member of the WNK family, modifies the function of immune cells. Here we report that in macrophages, WNK1 has suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses via TGFß-activated kinase 1 (TAK1)-mediated activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway. We found that WNK1 heterozygous (WNK1+/-) mice produced excessive proinflammatory cytokines in an experimental LPS-induced sepsis model, and peritoneal macrophages isolated from WNK1+/- mice produced higher levels of LPS-induced cytokines and NOS2 expression as canonical proinflammatory M1 macrophage markers. We confirmed that small hairpin RNA (shRNA)-mediated knockdown of WNK1 activated LPS-induced cytokine production and NOS2 expression in RAW 264.7 macrophages. Moreover, we demonstrated that WNK1 knockdown increased the nuclear translocation of NF-κB and activated the p38 and Jun N-terminal kinase (JNK) MAPK signaling pathway and that a TAK1 inhibitor diminished these effects of WNK1 knockdown. These results suggest that WNK1 acts as a physiologic immune modulator via interactions with TAK1. WNK1 may be a therapeutic target against the cytokine storm caused by sepsis.


Asunto(s)
Citocinas/biosíntesis , Quinasas Quinasa Quinasa PAM/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Sepsis/inmunología , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Animales , Células Cultivadas , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM/fisiología , Sistema de Señalización de MAP Quinasas , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Células RAW 264.7 , Sepsis/inducido químicamente , Sepsis/enzimología , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Proteína Quinasa Deficiente en Lisina WNK 1/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
J Hand Surg Eur Vol ; 45(10): 1087-1092, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32493113

RESUMEN

This study assessed the risk factors for spontaneous extensor tendon rupture in the rheumatoid wrist. The rupture group consisted of 25 wrists that had rupture of the extensor tendons and later received tendon reconstruction. The non-rupture group included 77 rheumatoid wrists without extensor tendon rupture. We assessed patients' pain at the distal radioulnar joint and swelling in the extensor tendon compartments clinically, matrix metalloproteinase-3 level in blood samples, and radiographic findings. We found that swelling in the extensor tendon compartments, the scallop sign, and severe dorsal subluxation are significantly associated with spontaneous extensor tendon rupture, but serum matrix metalloproteinase-3 level is not.Level of evidence: IV.


Asunto(s)
Artritis Reumatoide , Muñeca , Artritis Reumatoide/complicaciones , Humanos , Factores de Riesgo , Rotura/diagnóstico por imagen , Rotura/cirugía , Rotura Espontánea/cirugía , Tendones/diagnóstico por imagen , Tendones/cirugía , Articulación de la Muñeca/diagnóstico por imagen , Articulación de la Muñeca/cirugía
12.
Cell ; 181(3): 557-573.e18, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259484

RESUMEN

Central nervous system (CNS) macrophages comprise microglia and border-associated macrophages (BAMs) residing in the meninges, the choroid plexus, and the perivascular spaces. Most CNS macrophages emerge during development, with the exception of choroid plexus and dural macrophages, which are replaced by monocytes in adulthood. Whether microglia and BAMs share a developmental program or arise from separate lineages remains unknown. Here, we identified two phenotypically, transcriptionally, and locally distinct brain macrophages throughout development, giving rise to either microglia or BAMs. Two macrophage populations were already present in the yolk sac suggesting an early segregation. Fate-mapping models revealed that BAMs mostly derived from early erythro-myeloid progenitors in the yolk sac. The development of microglia was dependent on TGF-ß, whereas the genesis of BAMs occurred independently of this cytokine. Collectively, our data show that developing parenchymal and non-parenchymal brain macrophages are separate entities in terms of ontogeny, gene signature, and requirement for TGF-ß.


Asunto(s)
Encéfalo/citología , Macrófagos/citología , Microglía/citología , Animales , Encéfalo/metabolismo , Linaje de la Célula , Ratones , Monocitos , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
13.
Mol Pharm ; 17(4): 1237-1247, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32129629

RESUMEN

DNA vaccinations are promising strategies for treating diseases that require cellular immunity (i.e., cancer and protozoan infection). Here, we report on the use of a liposomal nanocarrier (lipid nanoparticles (LNPs)) composed of an SS-cleavable and pH-activated lipidlike material (ssPalm) as an in vivo DNA vaccine. After subcutaneous administration, the LNPs containing an ssPalmE, an ssPalm with vitamin E scaffolds, elicited a higher gene expression activity in comparison with the other LNPs composed of the ssPalms with different hydrophobic scaffolds. Immunization with the ssPalmE-LNPs encapsulating plasmid DNA that encodes ovalbumin (OVA, a model tumor antigen) or profilin (TgPF, a potent antigen of Toxoplasma gondii) induced substantial antitumor or antiprotozoan effects, respectively. Flow cytometry analysis of the cells that had taken up the LNPs in draining lymph nodes (dLNs) showed that the ssPalmE-LNPs were largely taken up by macrophages and a small number of dendritic cells. We found that the transient deletion of CD169+ macrophages, a subpopulation of macrophages that play a key role in cancer immunity, unexpectedly enhanced the activity of the DNA vaccine. These data suggest that the ssPalmE-LNPs are effective DNA vaccine carriers, and a strategy for avoiding their being trapped by CD169+ macrophages will be a promising approach for developing next-generation DNA vaccines.


Asunto(s)
Lípidos/química , Nanopartículas/química , Infecciones por Protozoos/inmunología , Vacunas de ADN/química , Vacunas de ADN/inmunología , Vitamina E/inmunología , Animales , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , ADN/inmunología , Células Dendríticas/inmunología , Femenino , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Inmunidad Celular/inmunología , Inmunización/métodos , Liposomas/química , Liposomas/inmunología , Ganglios Linfáticos/inmunología , Macrófagos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/inmunología , Ovalbúmina/inmunología , Plásmidos/inmunología , Vitamina E/química
14.
J Clin Exp Hematop ; 59(3): 112-118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31564713

RESUMEN

The large Maf transcription factors are expressed in immune cells including macrophages and lymphocytes. To investigate the distribution of Maf expression in human organs, immunostaining for Maf was performed using sections of several human organs. High Maf expression was seen in the nucleus of macrophages in the gastrointestinal tract and lymph node sinus macrophages (LySMs). Then, we assessed whether Maf expression in LySMs was correlated with CD169 expression and the clinical prognosis in patients with esophageal cancer. Maf expression was associated with CD169 expression, but Maf expression in LySMs was not associated with the clinical course in patients with esophageal cancer. We determined which cytokines stimulate Maf expression using cultured macrophages. Immunocytochemistry showed that Maf expression was significantly elevated by interferon-γ. These results are the first report of Maf expression in human samples. Maf expression may be a marker for the macrophage population in humans.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias Esofágicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Ganglios Linfáticos/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas c-maf/biosíntesis , Neoplasias Esofágicas/patología , Femenino , Humanos , Interferón gamma/biosíntesis , Ganglios Linfáticos/patología , Macrófagos/patología , Masculino , Estudios Retrospectivos , Lectina 1 Similar a Ig de Unión al Ácido Siálico/biosíntesis
15.
J Cell Biol ; 218(10): 3355-3371, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31519727

RESUMEN

Metastasis is a major cause of cancer-related death. Membrane type 1-matrix metalloproteinase (MT1-MMP) is a critical protease for local invasion and metastasis. MT1-MMP is synthesized in the endoplasmic reticulum (ER) and transported in vesicles to invadopodia, specialized subdomains of the plasma membrane, through secretory and endocytic recycling pathways. The molecular mechanism underlying intracellular transport of MT1-MMP has been extensively studied, but is not fully understood. We show that MT1-MMP diverts the SNARE Bet1 from its function in ER-Golgi transport, to promote MT1-MMP trafficking to the cell surface, likely to invadopodia. In invasive cells, Bet1 is localized in MT1-MMP-positive endosomes in addition to the Golgi apparatus, and forms a novel SNARE complex with syntaxin 4 and endosomal SNAREs. MT1-MMP may also use Bet1 for its export from raft-like structures in the ER. Our results suggest the recruitment of Bet1 at an early stage after MT1-MMP expression promotes the exit of MT1-MMP from the ER and its efficient transport to invadopodia.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas SNARE/metabolismo , Humanos , Transporte de Proteínas , Células Tumorales Cultivadas
16.
Immunity ; 50(6): 1467-1481.e6, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31201093

RESUMEN

Tissue-resident macrophages are receptive to specific signals concentrated in cellular niches that direct their cell differentiation and maintenance genetic programs. Here, we found that deficiency of the cytokine RANKL in lymphoid tissue organizers and marginal reticular stromal cells of lymph nodes resulted in the loss of the CD169+ sinusoidal macrophages (SMs) comprising the subcapsular and the medullary subtypes. Subcapsular SM differentiation was impaired in mice with targeted RANK deficiency in SMs. Temporally controlled RANK removal in lymphatic endothelial cells (LECs) revealed that lymphatic RANK activation during embryogenesis and shortly after birth was required for the differentiation of both SM subtypes. Moreover, RANK expression by LECs was necessary for SM restoration after inflammation-induced cell loss. Thus, cooperation between mesenchymal cells and LECs shapes a niche environment that supports SM differentiation and reconstitution after inflammation.


Asunto(s)
Citocinas/metabolismo , Ganglios Linfáticos/citología , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Células del Estroma/metabolismo , Animales , Biomarcadores , Diferenciación Celular , Microambiente Celular , Inmunofenotipificación , Macrófagos/inmunología , Ratones , Ratones Transgénicos , Transducción de Señal
17.
Biochem Biophys Res Commun ; 505(2): 453-459, 2018 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-30268501

RESUMEN

Interleukin (IL)-11 belongs to the members of the IL-6 family of cytokines and is involved in a variety of biological responses, including hematopoiesis, bone development, and carcinogenesis. However, the cellular sources of IL-11 and regulation of IL-11 expression under physiological and pathological conditions are not fully understood. One of the causes to prevent characterization of IL-11 in vivo is due to the lack of reliable antibodies that detect IL-11 by immunohistochemistry. Moreover, although mice lacking Il11ra have been generated and extensively characterized, Il11-deficient mice have not been characterized yet. Here we generated two anti-IL-11 antibodies that blocked biological activities of IL-11 and detected IL-11 by immunohistochemistry, respectively. One clone of anti-IL-11 antibodies blocked IL-11-, but not IL-6-induced cell proliferation and IL-11-induced phosphorylation of STAT3 of an IL-11-dependent cell line. Moreover, we used recently established Il11-deficient mice to test the specificity of anti-IL-11 antibodies for immunohistochemistry. Another clone of anti-IL-11 antibodies stained stromal cells surrounding tumors of the colon of wild-type, but not Il11-deficient mice following treatment with Azoxymethane plus dextran sulfate sodium. Together, these newly developed anti-IL-11 antibodies provide a better understanding of the functions of IL-11 in vivo under various physiological and pathological conditions.


Asunto(s)
Anticuerpos/farmacología , Interleucina-11/inmunología , Animales , Azoximetano , Carcinógenos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon , Sulfato de Dextran , Interleucina-11/antagonistas & inhibidores , Interleucina-11/deficiencia , Interleucina-6 , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Células del Estroma
18.
J Biochem ; 164(2): 77-85, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29905851

RESUMEN

Tissue macrophages comprise heterogeneous subsets that differ in localization, phenotype and ontogeny. They acquire tissue-specific phenotype in order to maintain normal tissue physiology. This review summarizes the current knowledge about the functions of CD169-positive macrophage subset residing in the lymphoid organs and intestinal tract. Strategically positioned at the interface between tissue and circulating fluid, CD169+ macrophages in the lymphoid organs capture blood- and lymph-borne particulate materials. Antigen information relayed by CD169+ macrophages to neighbouring immune cells is important for enhancement of antimicrobial and antitumour immunity as well as induction of tolerance. In the intestinal tract, CD169+ macrophages localize distantly from epithelial border. Following mucosal injury, they exacerbate inflammation by producing CCL8 that recruits inflammatory monocytes. As such, a better understanding of CD169+ macrophage phenotypes may enable the design of tissue-specific therapies for both immunological and non-immunological diseases.


Asunto(s)
Macrófagos/inmunología , Células Neoplásicas Circulantes/inmunología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/inmunología , Animales , Humanos , Intestinos/inmunología
19.
J Immunol ; 201(2): 635-651, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907708

RESUMEN

Macrophages manifest distinct phenotype according to the organs in which they reside. In addition, they flexibly switch their character in adaptation to the changing environment. However, the molecular basis that explains the conversion of the macrophage phenotype has so far been unexplored. We find that CD169+ macrophages change their phenotype by regulating the level of a transcription factor Maf both in vitro and in vivo in C57BL/6J mice. When CD169+ macrophages were exposed to bacterial components, they expressed an array of acute inflammatory response genes in Maf-dependent manner and simultaneously start to downregulate Maf. This Maf suppression is dependent on accelerated degradation through proteasome pathway and microRNA-mediated silencing. The downregulation of Maf unlocks the NF-E2-related factor 2-dominant, cytoprotective/antioxidative program in the same macrophages. The present study provides new insights into the previously unanswered question of how macrophages initiate proinflammatory responses while retaining their capacity to repair injured tissues during inflammation.


Asunto(s)
Inflamación/inmunología , Macrófagos/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fenotipo , Proteolisis , Proteínas Proto-Oncogénicas c-maf/genética , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo
20.
J Tissue Eng Regen Med ; 12(6): 1469-1480, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29701915

RESUMEN

Neurogenesis in the adult peripheral nervous system remains to be demonstrated. We transplanted embryonic neural stem cells into a Wallerian degenerating nerve graft and observed development of a nodular structure consisting of neurons, glia, and Schwann cells. Histological analysis revealed a structure loosely resembling the spinal cord, including a synaptic network that formed along the neuron. Furthermore, the new axons reinnervated the paralysed muscle, forming both de novo and revived neuromuscular junctions. Reinnervation of the paralysed muscle resulted in significantly greater mean wet muscle weight and muscle fibre cross-sectional area on the cell transplantation side than on the surgical control side (body weight 0.071 ± 0.011% vs. 0.051 ± 0.007%, p = .006; area 355.6 ± 345.2 vs. 114.0 ± 132.0 µm2 , p < .001). Electrophysiological experiments demonstrated a functional connection between the neurons and muscle; hence, we identified this nodule as an ectopic ganglion. Surprisingly, in green rat experiments, most of these glial cells, but none of the neurons, expressed enhanced green fluorescent protein, suggesting that the cells constituting the ectopic ganglion were derived from both transplanted stem cells and endogenous stem cells. Such adult neurogenesis in a peripheral nerve related to neural stem cell transplantation has not been reported previously, and these results form the basis for a novel regenerative medicine approach in paralysed muscle.


Asunto(s)
Tejido Nervioso/patología , Neurogénesis , Degeneración Walleriana/patología , Animales , Masculino , Neuroglía/patología , Unión Neuromuscular/patología , Neuronas/patología , Ratas Endogámicas F344 , Células de Schwann/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA