Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38458201

RESUMEN

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Asunto(s)
Ciclinas , Reparación de la Incompatibilidad de ADN , Animales , Ciclinas/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Interfase , Mamíferos/metabolismo
2.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260436

RESUMEN

The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.

3.
PLoS One ; 17(5): e0268597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35587487

RESUMEN

BACKGROUND: Tuberous sclerosis complex (TSC) and some focal cortical dysplasias (FCDs) are associated with dysfunctional mTOR signaling, resulting in increased cell growth and ribosomal S6 protein phosphorylation (phospho-S6). mTOR inhibitors can reduce TSC tumor growth and seizure frequency, and preclinical FCD studies indicate seizure suppression. This pilot study evaluated safety of mTOR inhibitor everolimus in treatment resistant (failure of >2 anti-seizure medications) TSC and FCD patients undergoing surgical resection and to assess mTOR signaling and molecular pathways. METHODS AND FINDINGS: We evaluated everolimus in 14 treatment resistant epilepsy patients undergoing surgical resection (4.5 mg/m2 daily for 7 days; n = 4 Active, mean age 18.3 years, range 4-26; n = 10, Control, mean age 13.1, range 3-45). Everolimus was well tolerated. Mean plasma everolimus in Active participants were in target range (12.4 ng/ml). Brain phospho-S6 was similar in Active and Control participants with a lower trend in Active participants, with Ser235/236 1.19-fold (p = 0.67) and Ser240/244 1.15-fold lower (p = 0.66). Histologically, Ser235/236 was 1.56-fold (p = 0.37) and Ser240/244 was 5.55-fold lower (p = 0.22). Brain proteomics identified 11 proteins at <15% false discovery rate associated with coagulation system (p = 1.45x10-9) and acute phase response (p = 1.23x10-6) activation. A weighted gene correlation network analysis (WGCNA) of brain proteomics and phospho-S6 identified 5 significant modules. Higher phospho-S6 correlated negatively with cellular respiration and synaptic transmission and positively with organophosphate metabolic process, nuclear mRNA catabolic process, and neuron ensheathment. Brain metabolomics identified 14 increased features in Active participants, including N-acetylaspartylglutamic acid. Plasma proteomics and cytokine analyses revealed no differences. CONCLUSIONS: Short-term everolimus before epilepsy surgery in TSC and FCD resulted in no adverse events and trending lower mTOR signaling (phospho-S6). Future studies should evaluate implications of our findings, including coagulation system activation and everolimus efficacy in FCD, in larger studies with long-term treatment to better understand molecular and clinical effects. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov NCT02451696.


Asunto(s)
Epilepsia , Malformaciones del Desarrollo Cortical , Esclerosis Tuberosa , Adolescente , Adulto , Niño , Preescolar , Epilepsia/tratamiento farmacológico , Everolimus/uso terapéutico , Humanos , Malformaciones del Desarrollo Cortical/tratamiento farmacológico , Proyectos Piloto , Proteínas Ribosómicas , Convulsiones/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/patología , Adulto Joven
4.
Mol Oncol ; 15(5): 1432-1449, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33605027

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor with roles in inflammation and tumorigenicity. A fraction of STAT3 localizes in mitochondria, where it augments tumorigenesis via regulation of mitochondrial functions, including modulation of respiration and redox status. We show a novel mechanism for mitochondrial STAT3 regulation of redox homeostasis in triple-negative breast cancer cells. Loss of STAT3 diminished complex I dehydrogenase activity and impaired NAD+ regeneration, leading to impaired expression of glutathione biosynthetic genes and other antioxidant genes. Expressing mitochondrially restricted STAT3 or replenishment of the cellular NAD pool restored antioxidant gene expression, as did complementation of the NADH dehydrogenase activity by expression of the STAT3-independent yeast dehydrogenase, NDI1. These NAD-regulated processes contributed to malignant phenotypes by promoting clonal cell growth and migration. Proximity interaction and protein pull-down assays identified three components of complex I that associated with mitochondrial STAT3, providing a potential mechanistic basis for how mitochondrial STAT3 affects complex I activity. Our data document a novel mechanism through which mitochondrial STAT3 indirectly controls antioxidant gene regulation through a retrograde NAD+ signal that is modulated by complex I dehydrogenase activity.


Asunto(s)
Antioxidantes/metabolismo , Factor de Transcripción STAT3/fisiología , Neoplasias de la Mama Triple Negativas/genética , Células A549 , Línea Celular Tumoral , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Mitocondrias/metabolismo , NAD/genética , NAD/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
5.
Brain ; 143(12): 3653-3671, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33206953

RESUMEN

Epidemiological and experimental studies suggest that a disease-aggravating neuroinflammatory process is present at preclinical stages of Alzheimer's disease. Given that individuals with Down syndrome are at increased genetic risk of Alzheimer's disease and therefore develop the spectrum of Alzheimer's neuropathology in a uniform manner, they constitute an important population to study the evolution of neuroinflammation across the Alzheimer's continuum. Therefore, in this cross-sectional study, we characterized the brain inflammatory profile across the lifespan of individuals with Down syndrome. Microglial morphology and inflammatory cytokine expression were analysed by immunohistochemistry and electrochemiluminescent-based immunoassays in the frontal cortex from foetuses to adults with Down syndrome and control subjects (16 gestational weeks to 64 years), totalling 127 cases. Cytokine expression in mixed foetal primary cultures and hippocampus of adults with Down syndrome, as well as the effects of sex on cytokine expression were also analysed. A higher microglial soma size-to-process length ratio was observed in the frontal cortex of children and young adults with Down syndrome before the development of full-blown Alzheimer's pathology. Moreover, young adults with Down syndrome also displayed increased numbers of rod-like microglia. Increased levels of interleukin-8 and interleukin-10 were observed in children with Down syndrome (1-10 years; Down syndrome n = 5, controls n = 10) and higher levels of interleukin-1ß, interleukin-1α, interleukin-6, interleukin-8, interleukin-10, interleukin-15, eotaxin-3, interferon gamma-induced protein 10, macrophage-derived chemokine, and macrophage inflammatory protein-beta, were found in young adults with Down syndrome compared to euploid cases (13-25 years, Down syndrome n = 6, controls n = 24). Increased cytokine expression was also found in the conditioned media of mixed cortical primary cultures from second trimester foetuses with Down syndrome (Down syndrome n = 7, controls n = 7). Older adults with Down syndrome (39-68 years, Down syndrome n = 22, controls n = 16) displayed reduced levels of interleukin-10, interleukin-12p40, interferon-gamma and tumour necrosis factor-alpha. Microglia displayed larger somas and shorter processes. Moreover, an increase in dystrophic microglia and rod-like microglia aligning to neurons harbouring tau pathology were also observed. Sex stratification analyses revealed that females with Down syndrome had increased interleukin-6 and interleukin-8 levels compared to males with Down syndrome. Finally, multivariate projection methods identified specific cytokine patterns among individuals with Down syndrome. Our findings indicate the presence of an early and evolving neuroinflammatory phenotype across the lifespan in Down syndrome, a knowledge that is relevant for the discovery of stage-specific targets and for the design of possible anti-inflammatory trials against Alzheimer's disease in this population.


Asunto(s)
Síndrome de Down/patología , Encefalitis/patología , Adolescente , Anciano , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Células Cultivadas , Niño , Preescolar , Estudios Transversales , Citocinas/biosíntesis , Progresión de la Enfermedad , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Lactante , Recién Nacido , Longevidad , Masculino , Microglía/patología , Persona de Mediana Edad , Embarazo , Tauopatías/patología , Adulto Joven
6.
J Mass Spectrom ; 55(8): e4471, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31713933

RESUMEN

There is a trend in the analysis of shotgun proteomics data that aims to combine information from multiple search engines to increase the number of peptide annotations in an experiment. Typically, the degree of search engine complementarity and search engine agreement is visually illustrated by means of Venn diagrams that present the findings of a database search on the level of the nonredundant peptide annotations. We argue this practice to be not fit-for-purpose since the diagrams do not take into account and often conceal the information on complementarity and agreement at the level of the spectrum identification. We promote a new type of visualization that provides insight on the peptide sequence agreement at the level of the peptide-spectrum match (PSM) as a measure of consensus between two search engines with nominal outcomes. We applied the visualizations and percentage sequence agreement to an in-house data set of our benchmark organism, Caenorhabditis elegans, and illustrated that when assessing the agreement between search engine, one should disentangle the notion of PSM confidence and PSM identity. The visualizations presented in this manuscript provide a more informative assessment of pairs of search engines and are made available as an R function in the Supporting Information.


Asunto(s)
Bases de Datos de Proteínas , Péptidos , Proteómica , Péptidos/análisis , Péptidos/química , Péptidos/clasificación , Proteómica/métodos , Proteómica/normas , Motor de Búsqueda/métodos , Motor de Búsqueda/normas , Espectrometría de Masas en Tándem
7.
Cell ; 178(2): 316-329.e18, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257023

RESUMEN

Approximately 30% of human lung cancers acquire mutations in either Keap1 or Nfe2l2, resulting in the stabilization of Nrf2, the Nfe2l2 gene product, which controls oxidative homeostasis. Here, we show that heme triggers the degradation of Bach1, a pro-metastatic transcription factor, by promoting its interaction with the ubiquitin ligase Fbxo22. Nrf2 accumulation in lung cancers causes the stabilization of Bach1 by inducing Ho1, the enzyme catabolizing heme. In mouse models of lung cancers, loss of Keap1 or Fbxo22 induces metastasis in a Bach1-dependent manner. Pharmacological inhibition of Ho1 suppresses metastasis in a Fbxo22-dependent manner. Human metastatic lung cancer display high levels of Ho1 and Bach1. Bach1 transcriptional signature is associated with poor survival and metastasis in lung cancer patients. We propose that Nrf2 activates a metastatic program by inhibiting the heme- and Fbxo22-mediated degradation of Bach1, and that Ho1 inhibitors represent an effective therapeutic strategy to prevent lung cancer metastasis.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Neoplasias Pulmonares/patología , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/antagonistas & inhibidores , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Línea Celular Tumoral , Movimiento Celular , Proteínas F-Box/antagonistas & inhibidores , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Femenino , Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Estimación de Kaplan-Meier , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Metástasis de la Neoplasia , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Activación Transcripcional
8.
Proc Natl Acad Sci U S A ; 115(3): E468-E477, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29282323

RESUMEN

Programmed cell death-1 (PD-1) is an essential inhibitory receptor in T cells. Antibodies targeting PD-1 elicit durable clinical responses in patients with multiple tumor indications. Nevertheless, a significant proportion of patients do not respond to anti-PD-1 treatment, and a better understanding of the signaling pathways downstream of PD-1 could provide biomarkers for those whose tumors respond and new therapeutic approaches for those whose tumors do not. We used affinity purification mass spectrometry to uncover multiple proteins associated with PD-1. Among these proteins, signaling lymphocytic activation molecule-associated protein (SAP) was functionally and mechanistically analyzed for its contribution to PD-1 inhibitory responses. Silencing of SAP augmented and overexpression blocked PD-1 function. T cells from patients with X-linked lymphoproliferative disease (XLP), who lack functional SAP, were hyperresponsive to PD-1 signaling, confirming its inhibitory role downstream of PD-1. Strikingly, signaling downstream of PD-1 in purified T cell subsets did not correlate with PD-1 surface expression but was inversely correlated with intracellular SAP levels. Mechanistically, SAP opposed PD-1 function by acting as a molecular shield of key tyrosine residues that are targets for the tyrosine phosphatase SHP2, which mediates PD-1 inhibitory properties. Our results identify SAP as an inhibitor of PD-1 function and SHP2 as a potential therapeutic target in patients with XLP.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Espectrometría de Masas/métodos , Receptor de Muerte Celular Programada 1/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Linfocitos T/metabolismo , Animales , Biomarcadores de Tumor , Proliferación Celular/fisiología , Citocinas/genética , Citocinas/metabolismo , Regulación Enzimológica de la Expresión Génica , Silenciador del Gen , Células HEK293 , Humanos , Células Jurkat , Masculino , Ratones , Ratones Noqueados , Receptor de Muerte Celular Programada 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética
9.
Proteomics ; 16(18): 2495-501, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27436706

RESUMEN

Data sharing in the field of MS has advanced greatly thanks to innovations such as the standardized formats, data repositories, and publications guidelines. However, there is currently no data sharing mechanism that enables real-time data browsing and deep linking on a large scale: unrestricted data access (particularly at the quantitative level) ultimately requires the user to download a local copy of the relevant data files (e.g., in order to generate extracted ion chromatograms [XICs]). In this technical resource, we present a set of technologies (collectively termed OpenSlice) that enable the user to quantitatively query hundreds of hours of proteomics discovery data (i.e., nontargeted acquisition) in real time: the user is able to effectively generate XICs for arbitrary masses on the fly and across the entire dataset (so-called global ion chromatograms), interacting with the results through a very intuitive browser-based interface. A key design consideration underlying the OpenSlice approach is the notion that every aspect of the acquired data must be accessible through a RESTful uniform resource locator based application programming interface, up to and including individual chromatographic peaks (hence HyperPeaks). A publicly accessible demonstration of this technology based on the Clinical Proteomics Tumor Analysis Consortium CompRef dataset is made available at http://compref.fenyolab.org.


Asunto(s)
Cromatografía/métodos , Proteómica/métodos , Programas Informáticos , Humanos , Difusión de la Información , Neoplasias/metabolismo , Interfaz Usuario-Computador
10.
Mol Cell Proteomics ; 15(3): 1060-71, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26631509

RESUMEN

Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis.


Asunto(s)
Empalme Alternativo , Neoplasias Mamarias Experimentales/genética , Mutación , Proteómica/métodos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Animales , Biología Computacional/métodos , Bases de Datos Genéticas , Femenino , Genoma , Humanos , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Polimorfismo de Nucleótido Simple , Espectrometría de Masas en Tándem , Transcriptoma
11.
J Proteome Res ; 15(3): 795-9, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26638927

RESUMEN

Every molecular player in the cast of biology's central dogma is being sequenced and quantified with increasing ease and coverage. To bring the resulting genomic, transcriptomic, and proteomic data sets into coherence, tools must be developed that do not constrain data acquisition and analytics in any way but rather provide simple links across previously acquired data sets with minimal preprocessing and hassle. Here we present such a tool: PGx, which supports proteogenomic integration of mass spectrometry proteomics data with next-generation sequencing by mapping identified peptides onto their putative genomic coordinates.


Asunto(s)
Genómica/métodos , Proteómica/métodos , Análisis de Secuencia de Proteína/métodos , Bases de Datos de Proteínas , Perfilación de la Expresión Génica , Humanos , Espectrometría de Masas , Proteínas de Neoplasias/genética , Mapeo Peptídico
12.
J Am Soc Mass Spectrom ; 25(4): 636-50, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24496597

RESUMEN

We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.


Asunto(s)
Aminas/química , Péptidos/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Médula Ósea , Análisis de Fourier , Humanos , Indicadores y Reactivos/química , Marcaje Isotópico , Péptidos/análisis , Unión Proteica , Proteoma/análisis , Proteoma/química , Transducción de Señal
13.
Toxins (Basel) ; 4(11): 1367-84, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23202321

RESUMEN

Cnidaria is a rich phylum that includes thousands of marine species. In this study, we focused on Anthozoa and Hydrozoa that are represented by the Nematostella vectensis (Sea anemone) and Hydra magnipapillata genomes. We present a method for ranking the toxin-like candidates from complete proteomes of Cnidaria. Toxin-like functions were revealed using ClanTox, a statistical machine-learning predictor trained on ion channel inhibitors from venomous animals. Fundamental features that were emphasized in training ClanTox include cysteines and their spacing along the sequences. Among the 83,000 proteins derived from Cnidaria representatives, we found 170 candidates that fulfill the properties of toxin-like-proteins, the vast majority of which were previously unrecognized as toxins. An additional 394 short proteins exhibit characteristics of toxin-like proteins at a moderate degree of confidence. Remarkably, only 11% of the predicted toxin-like proteins were previously classified as toxins. Based on our prediction methodology and manual annotation, we inferred functions for over 400 of these proteins. Such functions include protease inhibitors, membrane pore formation, ion channel blockers and metal binding proteins. Many of the proteins belong to small families of paralogs. We conclude that the evolutionary expansion of toxin-like proteins in Cnidaria contributes to their fitness in the complex environment of the aquatic ecosystem.


Asunto(s)
Genoma , Hydra , Proteoma/genética , Anémonas de Mar , Toxinas Biológicas/metabolismo , Animales , Evolución Molecular , Hydra/genética , Hydra/metabolismo , Anotación de Secuencia Molecular , Filogenia , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Especificidad de la Especie , Secuencias Repetidas en Tándem , Toxinas Biológicas/química , Toxinas Biológicas/clasificación
14.
Anal Chem ; 84(18): 7919-25, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22909014

RESUMEN

Mass spectral libraries are collections of mass spectra curated specifically to facilitate the identification of small molecules, metabolites, and short peptides. One of the most comprehensive peptide spectral libraries is curated by NIST and contains upward of half a million annotated spectra dominated by human and model organisms including budding yeast and mouse. While motivated primarily by the technological goal of increasing sensitivity and specificity in spectral identification, we have found that the NIST spectral library constitutes a surprisingly rich source of biological knowledge. In this Article, we show that data-mining of these published libraries while applying strict empirical thresholds yields many characteristics of protein biology. In particular, we demonstrate that the size and increasingly comprehensive nature of these libraries, generated from whole-proteome digests, enables inference from the presence but crucially also from the absence of spectra for individual peptides. We illustrate implicit biological trends that lead to significant absence of spectra accounted for by complex post-translational modifications and overlooked proteolytic sites. We conclude that many subtle biological signatures such as genetic variants, regulated proteolysis, and post-translational modifications are exposed through the systematic mining of spectral collections originally compiled as general-purpose, technology-oriented resources.


Asunto(s)
Espectrometría de Masas , Péptidos/química , Secuencia de Aminoácidos , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Bases de Datos de Proteínas , Humanos , Datos de Secuencia Molecular , Biblioteca de Péptidos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
15.
Nature ; 487(7408): 491-5, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22810586

RESUMEN

Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype-phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations. Genome sequencing efforts have identified numerous germline mutations, and large numbers of somatic genomic alterations, associated with a predisposition to cancer. However, it remains difficult to distinguish background, or 'passenger', cancer mutations from causal, or 'driver', mutations in these data sets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations. Here we test the hypothesis that genomic variations and tumour viruses may cause cancer through related mechanisms, by systematically examining host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways, such as Notch signalling and apoptosis, that go awry in cancer. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on a par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches increase the specificity of cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate the prioritization of cancer-causing driver genes to advance the understanding of the genetic basis of human cancer.


Asunto(s)
Genes Relacionados con las Neoplasias/genética , Genoma Humano/genética , Interacciones Huésped-Patógeno , Neoplasias/genética , Neoplasias/metabolismo , Virus Oncogénicos/patogenicidad , Proteínas Virales/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Adenoviridae/patogenicidad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Neoplasias/patología , Virus Oncogénicos/genética , Virus Oncogénicos/metabolismo , Sistemas de Lectura Abierta/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo , Papillomaviridae/patogenicidad , Poliomavirus/genética , Poliomavirus/metabolismo , Poliomavirus/patogenicidad , Receptores Notch/metabolismo , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/genética
16.
PLoS One ; 7(4): e35711, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22558206

RESUMEN

PURPOSE: Patients with neurofibromatosis 1 (NF1), NF2, and schwannomatosis are at risk for multiple nerve sheath tumors and premature mortality. Traditional magnetic resonance imaging (MRI) has limited ability to assess disease burden accurately. The aim of this study was to establish an international cohort of patients with quantified whole-body internal tumor burden and to correlate tumor burden with clinical features of disease. METHODS: We determined the number, volume, and distribution of internal nerve sheath tumors in patients using whole-body MRI (WBMRI) and three-dimensional computerized volumetry. We quantified the distribution of tumor volume across body regions and used unsupervised cluster analysis to group patients based on tumor distribution. We correlated the presence and volume of internal tumors with disease-related and demographic factors. RESULTS: WBMRI identified 1286 tumors in 145/247 patients (59%). Schwannomatosis patients had the highest prevalence of tumors (P = 0.03), but NF1 patients had the highest median tumor volume (P = 0.02). Tumor volume was unevenly distributed across body regions with overrepresentation of the head/neck and pelvis. Risk factors for internal nerve sheath tumors included decreasing numbers of café-au-lait macules in NF1 patients (P = 0.003) and history of skeletal abnormalities in NF2 patients (P = 0.09). Risk factors for higher tumor volume included female gender (P = 0.05) and increasing subcutaneous neurofibromas (P = 0.03) in NF1 patients, absence of cutaneous schwannomas in NF2 patients (P = 0.06), and increasing age in schwannomatosis patients (p = 0.10). CONCLUSION: WBMRI provides a comprehensive phenotype of neurofibromatosis patients, identifies distinct anatomic subgroups, and provides the basis for investigating molecular biomarkers that correlate with unique disease manifestations.


Asunto(s)
Neurilemoma/patología , Neurofibromatosis/patología , Neurofibromatosis 1/patología , Neurofibromatosis 2/patología , Neoplasias Cutáneas/patología , Adulto , Factores de Edad , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neurilemoma/diagnóstico , Neurofibromatosis/diagnóstico , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 2/diagnóstico , Fenotipo , Factores de Riesgo , Factores Sexuales , Neoplasias Cutáneas/diagnóstico , Carga Tumoral , Imagen de Cuerpo Entero
17.
Mol Cell Proteomics ; 11(8): 411-21, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22535209

RESUMEN

The Ku heterodimer plays an essential role in non-homologous end-joining and other cellular processes including transcription, telomere maintenance and apoptosis. While the function of Ku is regulated through its association with other proteins and nucleic acids, the specific composition of these macromolecular complexes and their dynamic response to endogenous and exogenous cellular stimuli are not well understood. Here we use quantitative proteomics to define the composition of Ku multicomponent complexes and demonstrate that they are dramatically altered in response to UV radiation. Subsequent biochemical assays revealed that the presence of DNA ends leads to the substitution of RNA-binding proteins with DNA and chromatin associated factors to create a macromolecular complex poised for DNA repair. We observed that dynamic remodeling of the Ku complex coincided with exit of Ku and other DNA repair proteins from the nucleolus. Microinjection of sheared DNA into live cells as a mimetic for double strand breaks confirmed these findings in vivo.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Helicasas/metabolismo , ADN/metabolismo , Proteómica/métodos , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Western Blotting , Línea Celular Tumoral , Nucléolo Celular/metabolismo , ADN/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Células HeLa , Humanos , Autoantígeno Ku , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica/genética , Transporte de Proteínas/efectos de la radiación , Proteoma/clasificación , Proteoma/genética , Proteoma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Factores de Tiempo , Rayos Ultravioleta
18.
Anal Chem ; 83(23): 8959-67, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22017476

RESUMEN

Fragmentation of multiple peptides in a single tandem mass scan impairs accuracy of isobaric mass tag based quantification. Consequently, practitioners aim at fragmenting peptide ions with the highest possible purity without compromising on sensitivity and coverage achieved in the experiment. Here we report the first systematic study optimizing delayed fragmentation options on Orbitrap instruments. We demonstrate that by delaying peptide fragmentation to occur closer to the apex of the chromatographic peak in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments cofragmentation is reduced by 2-fold and peptides are fragmented with 2.8-fold better signal-to-noise ratios. This results in significantly improved accuracy of isobaric mass tag quantification. Further, we measured cofragmentation dependence on isolation width. In comparison to Orbitrap XL instruments the reduced space charging in the Orbitrap Velos enables isolation widths as narrow as 1 Th without impairing coverage, thus substantially reducing cofragmentation. When delayed peptide fragmentation and narrow isolation width settings were both applied, cofragmentation-induced ratio compression could be reduced by 32% on a log2 scale under otherwise identical conditions.


Asunto(s)
Espectrometría de Masas , Péptidos/análisis , Proteínas/metabolismo , Cromatografía Líquida de Alta Presión , Peso Molecular , Relación Señal-Ruido
19.
Proteomics ; 10(23): 4306-10, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21082763

RESUMEN

Recent developments in MS-based proteomics have increased the emphasis on peptides as a primary observable. While peptides are identified by tandem mass spectra, the link between peptide and protein remains implicit given the bottom-up nature of the experiment in which proteins are enzymatically digested prior to sequencing. It is therefore useful to provide a fast lookup from peptide to protein in order to systematically establish the broadest possible protein basis for the observed peptides. Here, we describe Pep2Pro, a fast web-service providing protein lookup by peptides covering the entire protein space comprising ∼10 million UniRef100 sequences. We demonstrate the usefulness of the service by reanalyzing peptides from two recent meta-proteomic data sets and identifying taxon-specific peptides, thereby implicating individual species as being present in these complex samples. The Pep2Pro web service can be accessed at http://www.pep2pro.org.


Asunto(s)
Bases de Datos de Proteínas , Diccionarios Químicos como Asunto , Proteómica/métodos , Humanos , Internet , Péptidos/química , Proteínas/química
20.
Proteomics ; 10(9): 1880-5, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20198642

RESUMEN

Recent improvements in proteomic technologies have collectively yielded data sets that far exceed the capabilities of typical low-throughput interpretation strategies. Unfortunately, tools designed to leverage the "peptide-centric" content of MS-based proteomics lag the current rate of data production. Here, we describe Pathway Palette (http://blaispathways.dfci.harvard.edu), a freely accessible internet application that enables researchers to easily transition from peptides to biological pathways, while simultaneously retaining the qualitative and quantitative aspects of the underlying MS data.


Asunto(s)
Internet , Espectrometría de Masas/métodos , Péptidos/análisis , Proteínas/análisis , Proteómica/métodos , Secuencia de Aminoácidos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA