Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 12(1): 1355, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649303

RESUMEN

The Mediator complex plays an essential and multi-faceted role in regulation of RNA polymerase II transcription in all eukaryotes. Structural analysis of yeast Mediator has provided an understanding of the conserved core of the complex and its interaction with RNA polymerase II but failed to reveal the structure of the Tail module that contains most subunits targeted by activators and repressors. Here we present a molecular model of mammalian (Mus musculus) Mediator, derived from a 4.0 Å resolution cryo-EM map of the complex. The mammalian Mediator structure reveals that the previously unresolved Tail module, which includes a number of metazoan specific subunits, interacts extensively with core Mediator and has the potential to influence its conformation and interactions.


Asunto(s)
Secuencia Conservada , Mamíferos/metabolismo , Complejo Mediador/química , Complejo Mediador/metabolismo , Animales , Línea Celular Tumoral , Enfermedad/genética , Complejo Mediador/ultraestructura , Ratones , Modelos Moleculares , Mutación/genética , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
2.
Sci Adv ; 3(5): e1602670, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508067

RESUMEN

Human adenoviruses (HAdVs) cause acute respiratory, ocular, and gastroenteric diseases and are also frequently used as gene and vaccine delivery vectors. Unlike the archetype human adenovirus C5 (HAdV-C5), human adenovirus D26 (HAdV-D26) belongs to species-D HAdVs, which target different cellular receptors, and is differentially recognized by immune surveillance mechanisms. HAdV-D26 is being championed as a lower seroprevalent vaccine and oncolytic vector in preclinical and human clinical studies. To understand the molecular basis for their distinct biological properties and independently validate the structures of minor proteins, we determined the first structure of species-D HAdV at 3.7 Å resolution by cryo-electron microscopy. All the hexon hypervariable regions (HVRs), including HVR1, have been identified and exhibit a distinct organization compared to those of HAdV-C5. Despite the differences in the arrangement of helices in the coiled-coil structures, protein IX molecules form a continuous hexagonal network on the capsid exterior. In addition to the structurally conserved region (3 to 300) of IIIa, we identified an extra helical domain comprising residues 314 to 390 that further stabilizes the vertex region. Multiple (two to three) copies of the cleaved amino-terminal fragment of protein VI (pVIn) are observed in each hexon cavity, suggesting that there could be ≥480 copies of VI present in HAdV-D26. In addition, a localized asymmetric reconstruction of the vertex region provides new details of the three-pronged "claw hold" of the trimeric fiber and its interactions with the penton base. These observations resolve the previous conflicting assignments of the minor proteins and suggest the likely conservation of their organization across different HAdVs.


Asunto(s)
Adenovirus Humanos/química , Proteínas de la Cápside/química , Cápside/química , Microscopía por Crioelectrón/métodos , Humanos , Dominios Proteicos
3.
Biochemistry ; 55(2): 373-81, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26727048

RESUMEN

Ribonucleotide reductases (RNRs) are responsible for all de novo biosynthesis of DNA precursors in nature by catalyzing the conversion of ribonucleotides to deoxyribonucleotides. Because of its essential role in cell division, human RNR is a target for a number of anticancer drugs in clinical use. Like other class Ia RNRs, human RNR requires both a radical-generation subunit (ß) and nucleotide-binding subunit (α) for activity. Because of their complex dependence on allosteric effectors, however, the active and inactive quaternary forms of many class Ia RNRs have remained in question. Here, we present an X-ray crystal structure of the human α subunit in the presence of inhibiting levels of dATP, depicting a ring-shaped hexamer (α6) where the active sites line the inner hole. Surprisingly, our small-angle X-ray scattering (SAXS) results indicate that human α forms a similar hexamer in the presence of ATP, an activating effector. In both cases, α6 is assembled from dimers (α2) without a previously proposed tetramer intermediate (α4). However, we show with SAXS and electron microscopy that at millimolar ATP, the ATP-induced α6 can further interconvert with higher-order filaments. Differences in the dATP- and ATP-induced α6 were further examined by SAXS in the presence of the ß subunit and by activity assays as a function of ATP or dATP. Together, these results suggest that dATP-induced α6 is more stable than the ATP-induced α6 and that stabilization of this ring-shaped configuration provides a mechanism to prevent access of the ß subunit to the active site of α.


Asunto(s)
Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxiadenina/metabolismo , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Regulación Alostérica , Cristalografía por Rayos X , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Proc Natl Acad Sci U S A ; 110(10): 3835-40, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431160

RESUMEN

Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates (dNDPs). The Escherichia coli class Ia RNR uses a mechanism of radical propagation by which a cysteine in the active site of the RNR large (α2) subunit is transiently oxidized by a stable tyrosyl radical (Y•) in the RNR small (ß2) subunit over a 35-Å pathway of redox-active amino acids: Y122• ↔ [W48?] ↔ Y356 in ß2 to Y731 ↔ Y730 ↔ C439 in α2. When 3-aminotyrosine (NH2Y) is incorporated in place of Y730, a long-lived NH2Y730• is generated in α2 in the presence of wild-type (wt)-ß2, substrate, and effector. This radical intermediate is chemically and kinetically competent to generate dNDPs. Herein, evidence is presented that NH2Y730• induces formation of a kinetically stable α2ß2 complex. Under conditions that generate NH2Y730•, binding between Y730NH2Y-α2 and wt-ß2 is 25-fold tighter (Kd = 7 nM) than for wt-α2


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Dominio Catalítico , Transporte de Electrón , Estabilidad de Enzimas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Microscopía Electrónica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleótido Reductasas/clasificación , Ribonucleótido Reductasas/genética , Dispersión del Ángulo Pequeño , Espectrometría de Fluorescencia , Difracción de Rayos X
5.
Chem Biol ; 19(7): 799-805, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22840768

RESUMEN

Clofarabine (ClF) is a drug used in the treatment of leukemia. One of its primary targets is human ribonucleotide reductase (hRNR), a dual-subunit, (α(2))(m)(ß(2))(n), regulatory enzyme indispensable in de novo dNTP synthesis. We report that, in live mammalian cells, ClF targets hRNR by converting its α-subunit into kinetically stable hexamers. We established mammalian expression platforms that enabled isolation of functional α and characterization of its altered oligomeric associations in response to ClF treatment. Size exclusion chromatography and electron microscopy documented persistence of in-cell-assembled-α(6). Our data validate hRNR as an important target of ClF, provide evidence that in vivo α's quaternary structure can be perturbed by a nonnatural ligand, and suggest small-molecule-promoted, persistent hexamerization as a strategy to modulate hRNR activity. These studies lay foundations for documentation of RNR oligomeric state within a cell.


Asunto(s)
Nucleótidos de Adenina/farmacología , Arabinonucleósidos/farmacología , Hígado/citología , Hígado/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/antagonistas & inhibidores , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/química , Supervivencia Celular , Clofarabina , Humanos , Cinética , Hígado/enzimología , Estructura Molecular , Conformación Proteica/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribonucleótido Reductasas/metabolismo
6.
Structure ; 20(8): 1374-83, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22727814

RESUMEN

Ribonucleotide reductases (RNRs) provide the precursors for DNA biosynthesis and repair and are successful targets for anticancer drugs such as clofarabine and gemcitabine. Recently, we reported that dATP inhibits E. coli class Ia RNR by driving formation of RNR subunits into α4ß4 rings. Here, we present the first X-ray structure of a gemcitabine-inhibited E. coli RNR and show that the previously described α4ß4 rings can interlock to form an unprecedented (α4ß4)2 megacomplex. This complex is also seen in a higher-resolution dATP-inhibited RNR structure presented here, which employs a distinct crystal lattice from that observed in the gemcitabine-inhibited case. With few reported examples of protein catenanes, we use data from small-angle X-ray scattering and electron microscopy to both understand the solution conditions that contribute to concatenation in RNRs as well as present a mechanism for the formation of these unusual structures.


Asunto(s)
Proteínas de Escherichia coli/química , Exorribonucleasas/química , Cristalografía por Rayos X , Citidina Difosfato/análogos & derivados , Citidina Difosfato/química , Nucleótidos de Desoxiadenina/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/ultraestructura , Exorribonucleasas/antagonistas & inhibidores , Exorribonucleasas/ultraestructura , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
7.
Structure ; 20(5): 899-910, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22579255

RESUMEN

Mediator, a large (21 polypeptides, MW ∼1 MDa) complex conserved throughout eukaryotes, plays an essential role in control of gene expression by conveying regulatory signals that influence the activity of the preinitiation complex. However, the precise mode of interaction between Mediator and RNA polymerase II (RNAPII), and the mechanism of regulation by Mediator remain elusive. We used cryo-electron microscopy and reconstituted in vitro transcription assays to characterize a transcriptionally-active complex including the Mediator Head module and components of a minimum preinitiation complex (RNAPII, TFIIF, TFIIB, TBP, and promoter DNA). Our results reveal how the Head interacts with RNAPII, affecting its conformation and function.


Asunto(s)
Complejo Mediador/química , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Complejo Mediador/metabolismo , Complejo Mediador/ultraestructura , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo
8.
ACS Chem Biol ; 1(3): 135-8, 2006 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-17163658

RESUMEN

Mammalian fatty acid synthase (FAS) is a homodimeric, multifunctional polypeptide which comprises two full sets of catalytic subunits that carry out fatty acid synthesis. A recently published X-ray structure of FAS reveals, for the first time, the organization of all active sites involved in acyl chain elongation and provides a structural framework for interpretation of extensive functional studies. Further analysis with techniques capable of providing information about single molecule conformations will eventually provide a more complete understanding of FAS.


Asunto(s)
Ácido Graso Sintasas/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Dimerización , Mamíferos , Modelos Moleculares , Proteínas Recombinantes/química , Difracción de Rayos X
9.
Chem Biol ; 11(12): 1667-76, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15610851

RESUMEN

The role of the beta-ketoacyl synthase domains in dimerization of the 2505 residue subunits of the multifunctional animal FAS has been evaluated by a combination of crosslinking and characterization of several truncated forms of the protein. Polypeptides containing only the N-terminal 971 residues can form dimers, but polypeptides lacking only the N-terminal 422 residue beta-ketoacyl synthase domain cannot. FAS subunits can be crosslinked with spacer lengths as short as 6 A, via cysteine residues engineered near the N terminus of the full-length polypeptides. The proximity of the N-terminal beta-ketoacyl synthase domains and their essential role in dimerization is consistent with a revised model for the FAS in which a head-to-head arrangement of two coiled subunits facilitates functional interactions between the dimeric beta-ketoacyl synthase and the acyl carrier protein domains of either subunit.


Asunto(s)
Ácido Graso Sintasas/metabolismo , Subunidades de Proteína/metabolismo , Animales , Clonación Molecular , Cisteína/química , Dimerización , Ácido Graso Sintasas/química , Ácido Graso Sintasas/aislamiento & purificación , Modelos Moleculares , Fragmentos de Péptidos/química , Sintasas Poliquetidas/biosíntesis , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato
10.
Proc Natl Acad Sci U S A ; 99(21): 13477-80, 2002 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12368485

RESUMEN

Electron microscopy of the RSC chromatin-remodeling complex reveals a ring of protein densities around a central cavity. The size and shape of the cavity correspond closely to those of a nucleosome. Results of nuclease protection analysis are consistent with nucleosome binding in the cavity. Such binding could explain the ability of RSC to expose nucleosomal DNA in the presence of ATP without loss of associated histones.


Asunto(s)
Cromatina/química , Cromatina/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/ultraestructura , Adenosina Trifosfato/metabolismo , Animales , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Técnicas In Vitro , Sustancias Macromoleculares , Microscopía Electrónica , Estructura Molecular , Nucleosomas/química , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Ratas , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA