Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Biol Cell ; 24(24): 3787-804, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24152733

RESUMEN

Membrane trafficking in concert with the peripheral quality control machinery plays a critical role in preserving plasma membrane (PM) protein homeostasis. Unfortunately, the peripheral quality control may also dispose of partially or transiently unfolded polypeptides and thereby contribute to the loss-of-expression phenotype of conformational diseases. Defective functional PM expression of the human ether-a-go-go-related gene (hERG) K(+) channel leads to the prolongation of the ventricular action potential that causes long QT syndrome 2 (LQT2), with increased propensity for arrhythmia and sudden cardiac arrest. LQT2 syndrome is attributed to channel biosynthetic processing defects due to mutation, drug-induced misfolding, or direct channel blockade. Here we provide evidence that a peripheral quality control mechanism can contribute to development of the LQT2 syndrome. We show that PM hERG structural and metabolic stability is compromised by the reduction of extracellular or intracellular K(+) concentration. Cardiac glycoside-induced intracellular K(+) depletion conformationally impairs the complex-glycosylated channel, which provokes chaperone- and C-terminal Hsp70-interacting protein-dependent polyubiquitination, accelerated internalization, and endosomal sorting complex required for transport-dependent lysosomal degradation. A similar mechanism contributes to the down-regulation of PM hERG harboring LQT2 missense mutations, with incomplete secretion defect. These results suggest that PM quality control plays a determining role in the loss-of-expression phenotype of hERG in certain hereditary and acquired LTQ2 syndromes.


Asunto(s)
Membrana Celular/genética , Canales de Potasio Éter-A-Go-Go/genética , Síndrome de QT Prolongado/genética , Transporte de Proteínas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glicósidos Cardíacos/farmacología , Cardiotónicos/farmacología , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Línea Celular Tumoral , Digoxina/farmacología , Regulación hacia Abajo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Inhibidores Enzimáticos/farmacología , Canales de Potasio Éter-A-Go-Go/biosíntesis , Células HEK293 , Células HeLa , Corazón/fisiología , Humanos , Ouabaína/farmacología , Técnicas de Placa-Clamp , Potasio/metabolismo , Pliegue de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Ubiquitinación/genética
2.
J Biol Chem ; 285(5): 3319-29, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19940115

RESUMEN

Loss of function mutations in the hERG (human ether-a-go-go related gene or KCNH2) potassium channel underlie the proarrhythmic cardiac long QT syndrome type 2. Most often this is a consequence of defective trafficking of hERG mutants to the cell surface, with channel retention and degradation at the endoplasmic reticulum. Here, we identify the Hsp40 type 1 chaperones DJA1 (DNAJA1/Hdj2) and DJA2 (DNAJA2) as key modulators of hERG degradation. Overexpression of the DJAs reduces hERG trafficking efficiency, an effect eliminated by the proteasomal inhibitor lactacystin or with DJA mutants lacking their J domains essential for Hsc70/Hsp70 activation. Both DJA1 and DJA2 cause a decrease in the amount of hERG complexed with Hsc70, indicating a preferential degradation of the complex. Similar effects were observed with the E3 ubiquitin ligase CHIP. Both the DJAs and CHIP reduce hERG stability and act differentially on folding intermediates of hERG and the disease-related trafficking mutant G601S. We propose a novel role for the DJA proteins in regulating degradation and suggest that they act at a critical point in secretory pathway quality control.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Proteínas del Choque Térmico HSP40/química , Mutación , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Chaperoninas/química , Densitometría/métodos , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Células HeLa , Humanos , Síndrome de QT Prolongado , Chaperonas Moleculares/química , Inhibidores de Proteasoma , Pliegue de Proteína
3.
J Biol Chem ; 282(32): 23509-16, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17569659

RESUMEN

The Long QT Syndrome is a cardiac disorder associated with ventricular arrhythmias that can lead to syncope and sudden death. One prominent form of the Long QT syndrome has been linked to mutations in the HERG gene (KCNH2) that encodes the voltage-dependent delayed rectifier potassium channel (I(Kr)). In order to search for HERG-interacting proteins important for HERG maturation and trafficking, we conducted a proteomics screen using myc-tagged HERG transfected into cardiac (HL-1) and non-cardiac (human embryonic kidney 293) cell lines. A partial list of putative HERG-interacting proteins includes several known components of the cytosolic chaperone system, including Hsc70 (70-kDa heat shock cognate protein), Hsp90 (90-kDa heat shock protein), Hdj-2, Hop (Hsp-organizing protein), and Bag-2 (BCL-associated athanogene 2). In addition, two membrane-integrated proteins were identified, calnexin and FKBP38 (38-kDa FK506-binding protein, FKBP8). We show that FKBP38 immunoprecipitates and co-localizes with HERG in our cellular system. Importantly, small interfering RNA knock down of FKBP38 causes a reduction of HERG trafficking, and overexpression of FKBP38 is able to partially rescue the LQT2 trafficking mutant F805C. We propose that FKBP38 is a co-chaperone of HERG and contributes via the Hsc70/Hsp90 chaperone system to the trafficking of wild type and mutant HERG potassium channels.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Línea Celular , Membrana Celular/metabolismo , Citosol/metabolismo , Canal de Potasio ERG1 , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Espectrometría de Masas , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Mutación , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Transfección
4.
J Cell Sci ; 118(Pt 13): 2803-12, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15961404

RESUMEN

Mutations of a putative cyclic-nucleotide-binding domain (CNBD) can disrupt the function of the hyperpolarization-activated cyclic-nucleotide-gated channel (HCN2) and the human ether-a-go-go-related gene potassium channel (HERG). Loss of function caused by C-terminal truncation, which includes all or part of the CNBD in HCN and HERG, has been related to abnormal channel trafficking. Similar defects have been reported for several of the missense mutations of HERG associated with long QT syndrome type 2 (LQT2). Thus, we postulate that normal processing of these channels depends upon the presence of the CNBD. Here, we show that removal of the entire CNBD prevents Golgi transit, surface localization and function of HERG channel tetramers. This is also true when any of the structural motifs of the CNBD is deleted, suggesting that deletion of any highly conserved region along the entire length of the CNBD can disrupt channel trafficking. Furthermore, we demonstrate that defective trafficking is a consequence of all LQT2 mutations in the CNBD, including two mutations not previously assessed and two others for which there are conflicting results in the literature. The trafficking sensitivity of the CNBD might be of general significance for other ion channels because complete deletion of the CNBD or mutations at highly conserved residues within the CNBD of the related ERG3 channel and HCN2 also prevent Golgi transit. These results broadly implicate the CNBD in ion-channel trafficking that accounts for the commonly observed loss of function associated with CNBD mutants and provides a rationale for distinct genetic disorders.


Asunto(s)
Membrana Celular/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Canales Iónicos/metabolismo , Síndrome de QT Prolongado/genética , Nucleótidos/metabolismo , Secuencia de Aminoácidos , Línea Celular , Membrana Celular/química , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/genética , Canales Iónicos/química , Canales Iónicos/genética , Datos de Secuencia Molecular , Mutación , Nucleótidos/genética , Canales de Potasio , Unión Proteica/genética
5.
J Biol Chem ; 278(41): 40105-12, 2003 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-12885765

RESUMEN

Mutations in the potassium channel encoded by the human ether-a-go-go-related gene (HERG) have been linked to the congenital long QT syndrome (LQTS), a cardiac disease associated with an increased preponderance of ventricular arrhythmias and sudden death. The COOH terminus of HERG harbors a large number of LQTS mutations and its removal prevents functional expression for reasons that remain unknown. In this study, we show that the COOH terminus of HERG is required for normal trafficking of the ion channel. We have identified a region critical for trafficking between residues 860 and 899 that includes a novel missense mutation at amino acid 861 (HERGN861I). Truncations or deletion of residues 860-899, characterized in six different expression systems including a cardiac cell line, resulted in decreased expression levels and an absence of the mature glycosylated form of the HERG protein. Deletion of this region did not interfere with the formation of tetramers but caused retention of the assembled ion channels within the endoplasmic reticulum. Consequently, removal of residues 860-899 resulted in the absence of the ion channels from the cell surface and a more rapid turnover rate than the wild type channels, which was evident very early in biogenesis. This study reveals a novel role of the COOH terminus in the normal biogenesis of HERG channels and suggests defective trafficking as a common mechanism for abnormal channel function resulting from mutations of critical COOH-terminal residues, including the LQTS mutant HERGN861I.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Unión al ADN , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/química , Canales de Potasio/metabolismo , Transactivadores , Animales , Sitios de Unión/genética , Transporte Biológico Activo , Línea Celular , Canal de Potasio ERG1 , Retículo Endoplásmico/metabolismo , Canales de Potasio Éter-A-Go-Go , Expresión Génica , Glicosilación , Humanos , Técnicas In Vitro , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Ratones , Mutación Missense , Miocitos Cardíacos/metabolismo , Fenotipo , Canales de Potasio/genética , Estructura Cuaternaria de Proteína , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Regulador Transcripcional ERG , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA