Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34443906

RESUMEN

In the current research, we present a single-step, one-pot, room temperature green synthesis approach for the development of functional poly(tannic acid)-based silver nanocomposites. Silver nanocomposites were synthesized using only tannic acid (plant polyphenol) as a reducing and capping agent. At room temperature and under mildly alkaline conditions, tannic acid reduces the silver salt into nanoparticles. Tannic acid undergoes oxidation and self-polymerization before the encapsulating of the synthesized silver nanoparticle and forms silver nanocomposites with a thick capping layer of poly(tannic acid). No organic solvents, special instruments, or toxic chemicals were used during the synthesis process. The results for the silver nanocomposites prepared under optimum conditions confirmed the successful synthesis of nearly spherical and fine nanocomposites (10.61 ± 1.55 nm) with a thick capping layer of poly(tannic acid) (~3 nm). With these nanocomposites, iron could be detected without any special instrument or technique. It was also demonstrated that, in the presence of Fe3+ ions (visual detection limit ~20 µM), nanocomposites aggregated using the coordination chemistry and exhibited visible color change. Ultraviolet-visible (UV-vis) and scanning electron microscopy (SEM) analysis also confirmed the formation of aggregate after the addition of the analyte in the detection system (colored nanocomposites). The unique analytic performance, simplicity, and ease of synthesis of the developed functional nanocomposites make them suitable for large-scale applications, especially in the fields of medical, sensing, and environmental monitoring. For the medical application, it is shown that synthesized nanocomposites can strongly inhibit the growth of Escherichia coli and Staphylococcus aureus. Furthermore, the particles also exhibit very good antifungal and antiviral activity.

2.
Plant Cell Environ ; 40(8): 1281-1295, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28102911

RESUMEN

Glutathione peroxidase-like enzymes (GPXLs) constitute a family of eight peroxidases in Arabidopsis thaliana. In contrast to the eponymous selenocysteine glutathione peroxidases in mammalian cells that use glutathione as electron donor, GPXLs rely on cysteine instead of selenocysteine for activity and depend on the thioredoxin system for reduction. Although plant GPXLs have been implicated in important agronomic traits such as drought tolerance, photooxidative tolerance and immune responses, there remain major ambiguities regarding their subcellular localization. Because their site of action is a prerequisite for an understanding of their function, we investigated the localization of all eight GPXLs in stable Arabidopsis lines expressing N-terminal and C-terminal fusions with redox-sensitive green fluorescent protein 2 (roGFP2) using confocal microscopy. GPXL1 and GPXL7 were found in plastids, while GPXL2 and GPXL8 are cytosolic nuclear. The N-terminal target peptide of GPXL6 is sufficient to direct roGFP2 into mitochondria. Interestingly, GPXL3, GPXL4 and GPXL5 all appear to be membrane bound. GPXL3 was found exclusively in the secretory pathway where it is anchored by a single N-terminal transmembrane domain. GPXL4 and GPXL5 are anchored to the plasma membrane. Presence of an N-terminal myristoylation motif and genetic disruption of membrane association through targeted mutagenesis point to myristoylation as essential for membrane localization.


Asunto(s)
Arabidopsis/citología , Arabidopsis/enzimología , Compartimento Celular , Membrana Celular/enzimología , Glutatión Peroxidasa/metabolismo , Secuencia de Aminoácidos , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Glutatión Peroxidasa/química , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Mutación/genética , Proteínas Nucleares/metabolismo , Filogenia , Plastidios/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Vías Secretoras , Solubilidad , Fracciones Subcelulares/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA