Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biochim Biophys Acta Proteins Proteom ; 1872(3): 140993, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38169170

RESUMEN

Immunoglobulin light chain (AL) amyloidosis involves the deposition of insoluble monoclonal AL protein fibrils in the extracellular space of different organs leading to dysfunction and death. Development of methods to efficiently express and purify AL proteins with acceptable standards of homogeneity and structural integrity has become critical to understand the in vitro and in vivo aspects of AL protein aggregation, and thus the disease progression. In this study, we report the biophysical characterization of His-tagged and untagged versions of AL full-length (FL) κI and λ6 subgroup proteins and their mutants expressed from the Expi293F human cell line. We used an array of biophysical and biochemical methods to analyze the structure and stability of the monomers, oligomerization states, and thermodynamic characteristics of the purified FL proteins and how they compare with the bacterially expressed FL proteins. Our results demonstrate that the tagged and untagged versions of FL proteins have comparable stability to proteins expressed in bacterial cells but exhibit multiple unfolding transitions and reversibility. Non-reducing SDS-PAGE and analytical ultracentrifugation analysis showed presence of monomers and dimers, with an insignificant amount of higher-order oligomers, in the purified fraction of all proteins. Overall, the FL proteins were expressed with sufficient yields for biophysical studies and can replace bacterial expression systems.


Asunto(s)
Anticuerpos Monoclonales , Cadenas Ligeras de Inmunoglobulina , Humanos , Cadenas Ligeras de Inmunoglobulina/genética , Biofisica , Línea Celular , Progresión de la Enfermedad
2.
J Trauma Acute Care Surg ; 96(2): 203-208, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37934621

RESUMEN

INTRODUCTION: Neutrophil extracellular traps (NETs) contribute to trauma-induced coagulopathy. We aimed to develop a murine multiple-injury model that induces thrombo-inflammatory response, that is, NETosis and accelerated thrombin generation. METHODS: Wild-type male mice (n = 10, aged 8-12 weeks) underwent multiple injuries (gastrocnemius crush, femur fracture, and laparotomy) and were compared with an uninjured control group (n = 10). Mice were euthanized by cardiac puncture performed 3 hours after injury. Whole blood samples were immediately processed to platelet poor plasma for thrombin generation kinetics (calibrated automated thrombogram), myeloperoxidase (MPO), and von Willebrand factor quantification. Immunohistochemistry of lung tissue was performed to assess for citrullinated histone 3 (CitH3) and MPO. A NETosis cluster was defined as 3+ neutrophils staining for CitH3 at 400× magnification (CitH3 cluster). Data were presented either as mean (SD) or median (interquartile range) with p < 0.05 significant. Sham and trauma treated animals were compared by the two-sample Wilcoxon rank-sum test. RESULTS: Animals subjected to multiple injuries had accelerated thrombin generation compared with controls with greater peak height (61.3 [41.2-73.2] vs. 28.4 [19.5-37.5] nM, p = 0.035) and shorter time to peak (3.37 [2.81-3.81] vs. 4.5 [4.08-4.75] minutes, p = 0.046). Markers of neutrophil activation were greater following multiple injuries than in controls (MPO, 961.1 [858.1-1116.8] vs. 481.3 [438.0-648.9] ng/mL; p = 0.004). NETosis, as evidenced by the aforementioned defined number of CitH3 clusters in the lung, was greater in multiple-injury animals than in controls (mean [SD], 3 [2.9] vs. 0.2 [0.7]; p = 0.009). CONCLUSION: This is the first study to demonstrate that NETosis and accelerated thrombin generation can be induced using a murine multiple-injury model, as early as 3 hours following injury.


Asunto(s)
Traumatismo Múltiple , Trombosis , Masculino , Ratones , Animales , Tromboinflamación , Inflamación , Trombina , Neutrófilos , Histonas
3.
Trauma Surg Acute Care Open ; 6(1): e000703, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912688

RESUMEN

BACKGROUND: Von Willebrand factor (VWF) is an acute phase reactant synthesized in the megakaryocytes and endothelial cells. VWF forms ultra-large multimers (ULVWF) which are cleaved by the metalloprotease ADAMTS-13, preventing spontaneous VWF-platelet interaction. After trauma, ULVWF is released into circulation as part of the acute phase reaction. We hypothesized that trauma patients would have increased levels of VWF and decreased levels of ADAMTS-13 and that these patients would have accelerated thrombin generation. METHODS: We assessed plasma concentrations of VWF antigen and ADAMTS-13 antigen, the Rapid Enzyme Assays for Autoimmune Diseases (REAADS) activity of VWF, which measure exposure of the platelet-binding A1 domain, and thrombin generation kinetics in 50 samples from 30 trauma patients and an additional 21 samples from volunteers. Samples were analyzed at 0 to 2 hours and at 6 hours from the time of injury. Data are presented as median (IQR) and Kruskal-Wallis test was performed between trauma patients and volunteers at both time points. RESULTS: REAADS activity was greater in trauma patients than volunteers both at 0 to 2 hours (190.0 (132.0-264.0) vs. 92.0 (71.0-114.0), p<0.002) and at 6 hours (167.5 (108.0-312.5.0) vs. 92.0 (71.0-114.0), p<0.001). ADAMTS-13 antigen levels were also decreased in trauma patients both at 0 to 2 hours (0.84 (0.51-0.94) vs. 1.00 (0.89-1.09), p=0.010) and at 6 hours (0.653 (0.531-0.821) vs. 1.00 (0.89-1.09), p<0.001). Trauma patients had accelerated thrombin generation kinetics, with greater peak height and shorter time to peak than healthy volunteers at both time points. DISCUSSION: Trauma patients have increased exposure of the VWF A1 domain and decreased levels of ADAMTS-13 compared with healthy volunteers. This suggests that the VWF burst after trauma may exceed the proteolytic capacity of ADAMTS-13, allowing circulating ULVWF multimers to bind platelets, potentially contributing to trauma-induced coagulopathy. LEVEL OF EVIDENCE: Prospective case cohort study.

4.
PLoS Pathog ; 17(2): e1009283, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33534834

RESUMEN

The frequent overexpression of CD46 in malignant tumors has provided a basis to use vaccine-lineage measles virus (MeV) as an oncolytic virotherapy platform. However, widespread measles seropositivity limits the systemic deployment of oncolytic MeV for the treatment of metastatic neoplasia. Here, we report the development of MeV-Stealth, a modified vaccine MeV strain that exhibits oncolytic properties and escapes antimeasles antibodies in vivo. We engineered this virus using homologous envelope glycoproteins from the closely-related but serologically non-cross reactive canine distemper virus (CDV). By fusing a high-affinity CD46 specific single-chain antibody fragment (scFv) to the CDV-Hemagglutinin (H), ablating its tropism for human nectin-4 and modifying the CDV-Fusion (F) signal peptide we achieved efficient retargeting to CD46. A receptor binding affinity of ~20 nM was required to trigger CD46-dependent intercellular fusion at levels comparable to the original MeV H/F complex and to achieve similar antitumor efficacy in myeloma and ovarian tumor-bearing mice models. In mice passively immunized with measles-immune serum, treatment of ovarian tumors with MeV-Stealth significantly increased overall survival compared with treatment with vaccine-lineage MeV. Our results show that MeV-Stealth effectively targets and lyses CD46-expressing cancer cells in mouse models of ovarian cancer and myeloma, and evades inhibition by human measles-immune serum. MeV-Stealth could therefore represent a strong alternative to current oncolytic MeV strains for treatment of measles-immune cancer patients.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Sueros Inmunes/inmunología , Virus del Sarampión/genética , Proteína Cofactora de Membrana/metabolismo , Mieloma Múltiple/terapia , Viroterapia Oncolítica/métodos , Neoplasias Ováricas/terapia , Animales , Virus del Moquillo Canino/genética , Femenino , Hemaglutininas Virales/genética , Hemaglutininas Virales/inmunología , Humanos , Proteína Cofactora de Membrana/inmunología , Ratones , Ratones SCID , Mieloma Múltiple/genética , Mieloma Múltiple/inmunología , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Unión Proteica , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Mol Biol ; 429(14): 2161-2177, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28533135

RESUMEN

Mutation of the cysteines forming the disulfide loop of the platelet GPIbα adhesive A1 domain of von Willebrand factor (VWF) causes quantitative VWF deficiencies in the blood and von Willebrand disease. We report two cases of transient severe thrombocytopenia induced by DDAVP treatment. Cys1272Trp and Cys1458Tyr mutations identified by genetic sequencing implicate an abnormal gain-of-function phenotype, evidenced by thrombocytopenia, which quickly relapses back to normal platelet counts and deficient plasma VWF. Using surface plasmon resonance, analytical rheology, and hydrogen-deuterium exchange mass spectrometry (HXMS), we decipher mechanisms of A1-GPIbα-mediated platelet adhesion and resolve dynamic secondary structure elements that regulate the binding pathway. Constrained by the disulfide, conformational selection between weak and tight binding states of A1 takes precedence and drives normal platelet adhesion to VWF. Less restrained through mutation, loss of the disulfide preferentially diverts binding through an induced-fit disease pathway enabling high-affinity GPIbα binding and firm platelet adhesion to a partially disordered A1 domain. HXMS reveals a dynamic asymmetry of flexible and ordered regions common to both variants, indicating that the partially disordered A1 lacking the disulfide retains native-like structural dynamics. Both binding mechanisms share common structural and thermodynamic properties, but the enhanced local disorder in the disease state perpetuates high-affinity platelet agglutination, characteristic of type 2B VWD, upon DDAVP-stimulated secretion of VWF leading to transient thrombocytopenia and a subsequent deficiency of plasma VWF, characteristic of type 2A VWD.


Asunto(s)
Desamino Arginina Vasopresina/efectos adversos , Proteínas Mutantes/metabolismo , Agregación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/inducido químicamente , Trombocitopenia/genética , Factor de von Willebrand/metabolismo , Sustitución de Aminoácidos , Niño , Cisteína/genética , Cisteína/metabolismo , Desamino Arginina Vasopresina/administración & dosificación , Disulfuros , Femenino , Humanos , Espectrometría de Masas , Proteínas Mutantes/genética , Mutación Missense , Pletismografía de Impedancia , Resonancia por Plasmón de Superficie , Trombocitopenia/patología , Factor de von Willebrand/genética
6.
Biophys Chem ; 207: 13-20, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26263488

RESUMEN

Light chain (AL) amyloidosis is a fatal disease where monoclonal immunoglobulin light chains deposit as insoluble amyloid fibrils. For many years it has been considered that AL amyloid deposits are formed primarily by the variable domain, while its constant domain has been considered not to be amyloidogenic. However recent studies identify full length (FL) light chains as part of the amyloid deposits. In this report, we compare the stabilities and amyloidogenic properties of two light chains, an amyloid-associated protein AL-09 FL, and its germline protein κ I O18/O8 FL (IGKV 1-33). We demonstrate that the thermal unfolding for both proteins is irreversible and scan rate dependent, with similar stability parameters compared to their VL counterparts. In addition, the constant domain seems to modulate their amyloidogenic properties and affect the morphology of the amyloid fibrils. These results allow us to understand the role of the kappa constant domain in AL amyloidosis.


Asunto(s)
Cadenas Ligeras de Inmunoglobulina/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Cadenas Ligeras de Inmunoglobulina/metabolismo , Cinética , Microscopía Electrónica , Desplegamiento Proteico , Espectrofotometría Ultravioleta , Temperatura , Termodinámica
7.
Proteins ; 82(12): 3373-84, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25244701

RESUMEN

Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs.


Asunto(s)
Alanina/química , Proteínas Intrínsecamente Desordenadas/química , Modelos Moleculares , Fragmentos de Péptidos/química , Prolina/química , Proteína p53 Supresora de Tumor/química , Alanina/análisis , Sustitución de Aminoácidos , Dicroismo Circular , Humanos , Hidrodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/genética , Mutación , Nefelometría y Turbidimetría , Fragmentos de Péptidos/genética , Prolina/análisis , Conformación Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas Recombinantes/química , Proteína p53 Supresora de Tumor/genética
8.
Proteins ; 82(5): 867-78, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24265179

RESUMEN

Clinical mutations in patients diagnosed with Type 2A von Willebrand disease (VWD) have been identified that break the single disulfide bond linking N- and C-termini in the vWF A1 domain. We have modeled the effect of these mutations on the disulfide-bonded structure of A1 by reducing and carboxy-amidating these cysteines. Solution biophysical studies show that loss of this disulfide bond induces a molten globule conformational state lacking global tertiary structure but retaining residual secondary structure. The conformational dependence of platelet adhesion to these native and molten globule states of A1 is quantitatively compared using real-time high-speed video microscopy analysis of platelet translocation dynamics under shear flow in a parallel plate microfluidic flow chamber. While normal platelets translocating on surface-captured native A1 domain retain the catch-bond character of pause times that increase as a function of shear rate at low shear and decrease as a function of shear rate at high shear, platelets that interact with A1 lacking the disulfide bond remain stably attached and do not translocate. Based on these findings, we propose that the shear stress-sensitive regulation of the A1-GPIb interaction is due to folding the tertiary structure of this domain. Removal of the tertiary structure by disrupting the disulfide bond destroys this regulatory mechanism resulting in high-strength interactions between platelets and vWF A1 that are dependent only on residual secondary structure elements present in the molten globule conformation.


Asunto(s)
Plaquetas/fisiología , Reología , Resistencia al Corte , Factor de von Willebrand/química , Acrilamida/metabolismo , Plaquetas/efectos de los fármacos , Cromatografía en Gel , Disulfuros/metabolismo , Guanidina/farmacología , Humanos , Oxidación-Reducción/efectos de los fármacos , Adhesividad Plaquetaria/fisiología , Desnaturalización Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Reología/efectos de los fármacos , Resistencia al Corte/efectos de los fármacos , Espectrometría de Fluorescencia , Temperatura , Triptófano/metabolismo
9.
J Mol Biol ; 426(2): 347-61, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24157440

RESUMEN

Light chain amyloidosis is a devastating disease where immunoglobulin light chains form amyloid fibrils, resulting in organ dysfunction and death. Previous studies have shown a direct correlation between the protein thermodynamic stability and the propensity for amyloid formation for some proteins involved in light chain amyloidosis. Here we investigate the effect of somatic mutations on protein stability and in vitro fibril formation of single and double restorative mutants of the protein AL-103 compared to the wild-type germline control protein. A scan rate dependence and hysteresis in the thermal unfolding and refolding was observed for all proteins. This indicates that the unfolding/refolding reaction is kinetically determined with different kinetic constants for unfolding and refolding even though the process remains experimentally reversible. Our structural analysis of AL-103 and AL-103 delP95aIns suggests a kinetic coupling of the unfolding/refolding process with cis-trans prolyl isomerization. Our data reveal that the deletion of proline 95a (AL-103 delP95aIns), which removes the trans-cis di-proline motif present in the patient protein AL-103, results in a dramatic increment in the thermodynamic stability and a significant delay in fibril formation kinetics with respect to AL-103. Fibril formation is pH dependent; all proteins form fibrils at pH2; reactions become slower and more stochastic as the pH increases up to pH7. Based on these results, we propose that, in addition to thermodynamic stability, kinetic stability (possibly influenced by the presence of cis proline 95a) plays a major role in the AL-103 amyloid fibril formation process.


Asunto(s)
Amiloidosis/patología , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Mutación , Pliegue de Proteína , Multimerización de Proteína , Humanos , Concentración de Iones de Hidrógeno , Cadenas Ligeras de Inmunoglobulina/genética , Cinética , Desnaturalización Proteica , Estabilidad Proteica , Temperatura
10.
Biophys Chem ; 159(1): 90-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21683504

RESUMEN

In adaptation biology the discovery of intracellular osmolyte molecules that in some cases reach molar levels, raises questions of how they influence protein thermodynamics. We've addressed such questions using the premise that from atomic coordinates, the transfer free energy of a native protein (ΔG(tr,N)) can be predicted by summing measured water-to-osmolyte transfer free energies of the protein's solvent exposed side chain and backbone component parts. ΔG(tr,D) is predicted using a self avoiding random coil model for the protein, and ΔG(tr,D)-ΔG(tr,N), predicts the m-value, a quantity that measures the osmolyte effect on the N⇌D transition. Using literature and newly measured m-values we show 1:1 correspondence between predicted and measured m-values covering a range of 12 kcal/mol/M in protein stability for 46 proteins and 9 different osmolytes. Osmolytes present a range of side chain and backbone effects on N and D solubility and protein stability key to their biological roles.


Asunto(s)
Proteínas/química , Betaína/química , Glicerol/química , Modelos Biológicos , Concentración Osmolar , Prolina/química , Estabilidad Proteica , Solubilidad , Urea/química
11.
Proteins ; 73(4): 802-13, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18498104

RESUMEN

Protein stability and solubility depend strongly on the presence of osmolytes, because of the protein preference to be solvated by either water or osmolyte. It has traditionally been assumed that only this relative preference can be measured, and that the individual solvation contributions of water and osmolyte are inaccessible. However, it is possible to determine hydration and osmolyte solvation (osmolation) separately using Kirkwood-Buff theory, and this fact has recently been utilized by several researchers. Here, we provide a thermodynamic assessment of how each surface group on proteins contributes to the overall hydration and osmolation. Our analysis is based on transfer free energy measurements with model-compounds that were previously demonstrated to allow for a very successful prediction of osmolyte-dependent protein stability. When combined with Kirkwood-Buff theory, the Transfer Model provides a space-resolved solvation pattern of the peptide unit, amino acids, and the folding/unfolding equilibrium of proteins in the presence of osmolytes. We find that the major solvation effects on protein side-chains originate from the osmolytes, and that the hydration mostly depends on the size of the side-chain. The peptide backbone unit displays a much more variable hydration in the different osmolyte solutions. Interestingly, the presence of sucrose leads to simultaneous accumulation of both the sugar and water in the vicinity of peptide groups, resulting from a saccharide accumulation that is less than the accumulation of water, a net preferential exclusion. Only the denaturing osmolyte, urea, obeys the classical solvent exchange mechanism in which the preferential interaction with the peptide unit excludes water.


Asunto(s)
Aminoácidos/química , Ósmosis , Péptidos/química , Solventes/química , Modelos Químicos , Soluciones , Termodinámica , Agua/química
12.
Proc Natl Acad Sci U S A ; 104(39): 15317-22, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17878304

RESUMEN

Because of its protein-denaturing ability, urea has played a pivotal role in the experimental and conceptual understanding of protein folding and unfolding. The measure of urea's ability to force a protein to unfold is given by the m value, an experimental quantity giving the free energy change for unfolding per molar urea. With the aid of Tanford's transfer model [Tanford C (1964) J Am Chem Soc 86:2050-2059], we use newly obtained group transfer free energies (GTFEs) of protein side-chain and backbone units from water to 1 M urea to account for the m value of urea, and the method reveals the anatomy of protein denaturation in terms of residue-level free energy contributions of groups newly exposed on denaturation. The GTFEs were obtained by accounting for solubility and activity coefficient ratios accompanying the transfer of glycine from water to 1 M urea. Contrary to the opinions of some researchers, the GTFEs show that urea does not denature proteins through favorable interactions with nonpolar side chains; what drives urea-induced protein unfolding is the large favorable interaction of urea with the peptide backbone. Although the m value is said to be proportional to surface area newly exposed on denaturation, only approximately 25% of the area favorably contributes to unfolding (because of newly exposed backbone units), with approximately 75% modestly opposing urea-induced denaturation (originating from side-chain exposure). Use of the transfer model and newly determined GTFEs achieves the long-sought goal of predicting urea-dependent cooperative protein unfolding energetics at the level of individual amino acid residues.


Asunto(s)
Urea/química , Aminoácidos/química , Bioquímica/métodos , Glicina/química , Modelos Químicos , Modelos Teóricos , Péptidos/química , Desnaturalización Proteica , Proteínas/química , Solubilidad , Solventes/química , Termodinámica
13.
Biochemistry ; 43(5): 1329-42, 2004 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-14756570

RESUMEN

With knowledge of individual transfer free energies of chemical groups that become newly exposed on protein denaturation and assuming the group transfer free energy contributions are additive, it should be possible to predict the stability of a protein in the presence of denaturant. Unfortunately, several unresolved issues have seriously hampered quantitative development of this transfer model for protein folding/unfolding. These issues include the lack of adequate demonstration that group transfer free energies (DeltaG(tr)) are additive and independent of the choice of model compound, the problem arising from dependence of DeltaG(tr) on concentration scales, the lack of knowledge of activity coefficients, and the validity of the mathematical constructs used in obtaining DeltaG(tr) values. Regarding transfer from water to 1 M concentrations of the naturally occurring osmolytes, trimethylamine-N-oxide (TMAO), sarcosine, betaine, proline, glycerol, sorbitol, sucrose, trehalose, and urea, using cyclic glycylglycine, zwitterionic glycine peptides, and N-acetylglycine amide peptides as models for the peptide backbone of proteins, we set out to address these issues and obtain DeltaG(tr) values for the peptide backbone unit. We demonstrate experimental approaches that obviate the choice of concentration scale and demonstrate additivity in DeltaG(tr) of the peptide backbone unit for all solvent systems studied. Evidence is presented to show that the DeltaG(tr) values are independent of the chemical model studied, and experimental conditions are given to illustrate when the mathematical constructs are valid and when activity coefficients can be ignored. Resolution of the long-standing issues that have stymied development of the transfer model now make it possible to design transfer experiments that yield reliable and quantitative values for the interactions between osmolyte-containing solvents and native and unfolded protein.


Asunto(s)
Glicina/análogos & derivados , Modelos Químicos , Péptidos/química , Termodinámica , Acetamidas/química , Sistemas de Transporte de Aminoácidos Neutros/química , Glicina/química , Glicilglicina/química , Concentración Osmolar , Péptidos Cíclicos/química , Valor Predictivo de las Pruebas , Conformación Proteica , Desnaturalización Proteica , Solubilidad , Soluciones , Solventes/química , Electricidad Estática , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA