Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958979

RESUMEN

Bacterial contamination during space missions is problematic for human health and damages filters and other vital support systems. Staphylococcus aureus is both a human commensal and an opportunistic pathogen that colonizes human tissues and causes acute and chronic infections. Virulence and colonization factors are positively and negatively regulated, respectively, by bacterial cell-to-cell communication (quorum sensing) via the agr (accessory gene regulator) system. When cultured under low-shear modelled microgravity conditions (LSMMG), S. aureus has been reported to maintain a colonization rather than a pathogenic phenotype. Here, we show that the modulation of agr expression via reduced production of autoinducing peptide (AIP) signal molecules was responsible for this behavior. In an LSMMG environment, the S. aureus strains JE2 (methicillin-resistant) and SH1000 (methicillin-sensitive) both exhibited reduced cytotoxicity towards the human leukemia monocytic cell line (THP-1) and increased fibronectin binding. Using S. aureus agrP3::lux reporter gene fusions and mass spectrometry to quantify the AIP concentrations, the activation of agr, which depends on the binding of AIP to the transcriptional regulator AgrC, was delayed in the strains with an intact autoinducible agr system. This was because AIP production was reduced under these growth conditions compared with the ground controls. Under LSMMG, S. aureus agrP3::lux reporter strains that cannot produce endogenous AIPs still responded to exogenous AIPs. Provision of exogenous AIPs to S. aureus USA300 during microgravity culture restored the cytotoxicity of culture supernatants for the THP-1 cells. These data suggest that microgravity does not affect AgrC-AIP interactions but more likely the generation of AIPs.


Asunto(s)
Infecciones Estafilocócicas , Ingravidez , Humanos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Quinasas/metabolismo , Percepción de Quorum/genética , Regulación hacia Abajo , Péptidos/metabolismo , Proteínas Bacterianas/metabolismo
2.
Small ; 19(22): e2300029, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36852650

RESUMEN

Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis-driven stimuli-responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood-brain barrier (BBB) trafficking and lack of GBM targeting-two major hurdles for anti-GBM therapies. NPs are dual-surface tailored with a i) brain-targeted acid-responsive Angiopep-2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L-Histidine moiety that provides NP preferential accumulation into GBM cells post-BBB crossing. In tumor invasive margin patient cells, the stimuli-responsive multifunctional NPs target GBM cells, enhance cell uptake by 12-fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long-term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli-responsive multifunctional NPs as an effective anti-GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Nanomedicina , Distribución Tisular , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Encéfalo , Barrera Hematoencefálica/patología , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Línea Celular Tumoral , Microambiente Tumoral
3.
Int J Pharm ; 586: 119566, 2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32622812

RESUMEN

Manufacturing of liposomal nanomedicines (e.g. Doxil®/Caelyx®) is a challenging and slow process based on multiple-vessel and batch processing techniques. As a result, the translation of these nanomedicines from bench to bedside has been limited. Microfluidic-based manufacturing offers the opportunity to address this issue, and de-risk the wider adoption of nanomedicines. Here we demonstrate the applicability of microfluidics for continuous manufacturing of PEGylated liposomes encapsulating ammonium sulfate (250 mM). Doxorubicin was subsequently active-loaded into these pre-formed liposomes. Critical process parameters and material considerations demonstrated to influence the liposomal product attributes included solvent selection and lipid concentration, flow rate ratio, and temperature and duration used for drug loading. However, the total flow rate did not affect the liposome product characteristics, allowing high production speeds to be adopted. The final liposomal product comprised of 80-100 nm vesicles (PDI < 0.2) encapsulating ≥ 90% doxorubicin, with matching release profiles to the innovator product and is stable for at least 6 months. Additionally, vincristine and acridine orange were active-loaded into these PEGylated liposomes (≥ 90% and ~100 nm in size) using the same process. These results demonstrate the ability to produce active-loaded PEGylated liposomes with high encapsulation efficiencies and particle sizes which support tumour targeting.


Asunto(s)
Sulfato de Amonio/química , Doxorrubicina/análogos & derivados , Nanopartículas , Naranja de Acridina/administración & dosificación , Naranja de Acridina/química , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Liberación de Fármacos , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Lípidos/química , Liposomas , Microfluídica , Tamaño de la Partícula , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Solventes/química , Vincristina/administración & dosificación , Vincristina/química
4.
Int J Pharm ; 582: 119266, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32251694

RESUMEN

Nanomedicines are well recognised for their ability to improve therapeutic outcomes. Yet, due to their complexity, nanomedicines are challenging and costly to produce using traditional manufacturing methods. For nanomedicines to be widely exploited, new manufacturing technologies must be adopted to reduce development costs and provide a consistent product. Within this study, we investigate microfluidic manufacture of nanomedicines. Using protein-loaded liposomes as a case study, we manufacture liposomes with tightly defined physico-chemical attributes (size, PDI, protein loading and release) from small-scale (1 mL) through to GMP volume production (200 mL/min). To achieve this, we investigate two different laminar flow microfluidic cartridge designs (based on a staggered herringbone design and a novel toroidal mixer design); for the first time we demonstrate the use of a new microfluidic cartridge design which delivers seamless scale-up production from bench-scale (12 mL/min) through GMP production requirements of over 20 L/h using the same standardised normal operating parameters. We also outline the application of tangential flow filtration for down-stream processing and high product yield. This work confirms that defined liposome products can be manufactured rapidly and reproducibly using a scale-independent production process, thereby de-risking the journey from bench to approved product.


Asunto(s)
Doxorrubicina/química , Lípidos/química , Microfluídica , Nanomedicina , Nanopartículas , Ovalbúmina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/normas , Composición de Medicamentos , Liberación de Fármacos , Lípidos/normas , Liposomas , Microfluídica/instrumentación , Microfluídica/normas , Nanomedicina/instrumentación , Nanomedicina/normas , Ovalbúmina/administración & dosificación , Ovalbúmina/normas , Tamaño de la Partícula , Control de Calidad , Solubilidad
5.
RSC Adv ; 9(6): 3176-3184, 2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30774937

RESUMEN

Silica-coated superparamagnetic iron nanoparticles (SiMAGs) are an exciting biomedical technology capable of targeted delivery of cell-based therapeutics and disease diagnosis. However, in order to realise their full clinical potential, their intracellular fate must be determined. The analytical techniques of super-resolution fluorescence microscopy, particle counting flow cytometry and pH-sensitive nanosensors were applied to elucidate mechanisms of intracellular SiMAG processing in human mesenchymal stem cell (hMSCs). Super-resolution microscopy showed SiMAG fluorescently-tagged nanoparticles are endocytosed and co-localised within lysosomes. When exposed to simulated lysosomal conditions SiMAGs were solubilised and exhibited diminishing fluorescence emission over 7 days. The in vitro intracellular metabolism of SiMAGs was monitored in hMSCs using flow cytometry and co-localised pH-sensitive nanosensors. A decrease in SiMAG fluorescence emission, which corresponded to a decrease in lysosomal pH was observed, mirroring ex vivo observations, suggesting SiMAG lysosomal exposure degrades fluorescent silica-coatings and iron cores. These findings indicate although there is a significant decrease in intracellular SiMAG loading, sufficient particles remain internalised (>50%) to render SiMAG treated cells amenable to long-term magnetic cell manipulation. Our analytical approach provides important insights into the understanding of the intracellular fate of SiMAG processing, which could be readily applied to other particle therapeutics, to advance their clinical translation.

6.
Nanoscale ; 7(34): 14525-31, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26259822

RESUMEN

Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.


Asunto(s)
Nanopartículas/química , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Cumarinas/química , Humanos , Peróxido de Hidrógeno/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Zinc/química
7.
Biomater Sci ; 1(4): 434-442, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32481908

RESUMEN

Polymer particles consisting of a biodegradable poly[lactide-co-glycolide] (PLGA) core and a thermoresponsive shell have been formulated to encapsulate the dye rhodamine 6G and the potent cytotoxic drug paclitaxel. Cellular uptake of these particles is significantly enhanced above the thermal transition temperature (TTT) of the polymer shells in the human breast carcinoma cell line MCF-7 as determined by flow cytometry and fluorescence microscopy. Paclitaxel-loaded particles display reduced and enhanced cytotoxicity below and above the TTT respectively compared to unencapsulated drug. The data suggests a potential route to enhanced anti-cancer efficacy through temperature-mediated cell targeting.

8.
Macromol Biosci ; 11(12): 1722-34, 2011 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-22012834

RESUMEN

Many difficulties in treating cancer arise from the problems in directing highly cytotoxic agents to the deseased tissues, cells and intracellular compartments. Many drug delivery systems have been devised to address this problem, including those that show a change in properties in response to a temperature stimulus. In particular, colloidal materials based on thermoresponsive polymers offer a means to transport drugs selectively into tumour tissues that are hyperthermic, either intrinsically or through the application of clinical procedures such as localised heating. In this paper, the key attributes of thermoresponsive polymer colloids are considered, a number of important recent examples are discussed and the possible future developments of these materials are evaluated.


Asunto(s)
Acrilamidas/química , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/terapia , Ácidos Polimetacrílicos/química , Antineoplásicos/administración & dosificación , Coloides , Portadores de Fármacos , Calor , Humanos , Magnetismo , Micelas , Nanopartículas , Transición de Fase , Solubilidad
9.
Photochem Photobiol Sci ; 9(6): 801-11, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20463998

RESUMEN

Reactive oxygen species (ROS) have for some time been implicated in the onset and progression of medical conditions including cancer, ageing, heart disease and Alzheimer's disease. Recently, it has been postulated that ROS play a much more subtle role in intracellular signalling mechanisms as second messengers. Given the importance of these species in influencing cellular processes, it is surprising that tools for studying intracellular levels of ROS are extremely limited and devices for studying the cells' response to internally generated ROS are virtually non-existent. In order to study the response of cells to intracellular ROS we have designed a nano-scale device that can both generate ROS and simultaneously monitor the cells' reaction as a function of changes in the important signalling ion, calcium. Here we report the synthesis, characterisation, and calibration of a new ROS nano-probe and demonstrate its ability to detect cellular response to elevated levels of intracellular ROS.


Asunto(s)
Nanopartículas/química , Porfirinas/química , Especies Reactivas de Oxígeno/química , Resinas Acrílicas/química , Técnicas Biosensibles , Calcio/química , Línea Celular , Humanos , Especies Reactivas de Oxígeno/metabolismo , Sistemas de Mensajero Secundario , Transducción de Señal
10.
Chem Commun (Camb) ; (6): 671-3, 2009 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-19322417

RESUMEN

Protease responsive nanosensors were obtained by the attachment of unique green fluorescent bifunctional 3-arylcoumarin-derived fluorogenic substrates to poly(acrylamide-co-N-(3-aminopropyl)methacrylamide) nanoparticles, in which proteolysis results in substantial signal amplification.


Asunto(s)
Cumarinas/química , Colorantes Fluorescentes/química , Nanoestructuras/química , Péptido Hidrolasas/metabolismo , Péptidos/química , Péptidos/metabolismo , Resinas Acrílicas/química , Reactivos de Enlaces Cruzados/química , Colorantes Fluorescentes/síntesis química , Cinética , Reproducibilidad de los Resultados , Especificidad por Sustrato
11.
J Control Release ; 130(2): 115-20, 2008 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-18644411

RESUMEN

The aim of this study was to demonstrate that flow cytometry and confocal microscopy could be applied in a complementary manner to analyse the internalisation of polymeric nanosensors in mesenchymal stem cells (MSC). The two techniques are able to provide en masse data analysis of nanosensors from large cell populations and detailed images of intracellular nanosensor localisation, respectively. The polyacrylamide nanosensors used in this investigation had been modified to contain free amine groups which were subsequently conjugated to Tat peptide, which acted as a delivery vector for nanosensor internalisation. Flow cytometry was used to confirm the health of MSC culture and assess the impact of nanosensor internalisation. MSC were characterised using fluorescently tagged CD cell surface markers that were also used to show that nanosensor internalisation did not negatively impact on MSC culture. Additionally it was shown that flow cytometry can be used to measure fluorophores located both on the cell surface and internalised within the cell. Complementary data was obtained using confocal microscopy to confirm nanosensor internalisation within MSC.


Asunto(s)
Portadores de Fármacos/química , Citometría de Flujo/métodos , Colorantes Fluorescentes/análisis , Células Madre Mesenquimatosas , Microscopía Confocal/métodos , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo , Portadores de Fármacos/efectos adversos , Colorantes Fluorescentes/efectos adversos , Productos del Gen tat/química , Humanos , Concentración de Iones de Hidrógeno , Hígado/citología , Hígado/embriología , Células Madre Mesenquimatosas/metabolismo , Tamaño de la Partícula
12.
Analyst ; 130(2): 163-70, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15665969

RESUMEN

Probes Encapsulated By Biologically Localised Embedding (PEBBLEs) are optical sensors with nanometer dimensions fabricated by microemulsion polymerisation. The most beneficial characteristic of these sensors is the protection offered by the sensor matrix which decreases interaction between the fluorophore and the cell. These sensors have been introduced to the cell by a number of methods; however this paper discusses the development of a generic method to facilitate inclusion of this type of sensor in the cell by a simple incubation step. This was achieved by covalent linkage of a synthetic Cell Penetrating Peptide (CPP) based on the Human Immuno-deficiency Virus (HIV) -1 Tat, to the external sensor matrix. Calcium sensors were used to demonstrate this approach to incorporate the sensors within the cell. Characterisation revealed the calcium sensors were approximately 30 +/- 7 nm in diameter with a slightly negative zeta potential. The sensors demonstrated a linear range of 0-50 microM with negligible interference from a range of cellular ions and protein. Leaching of entrapped dyes from the calcium sensors was determined as 3% in a 24 h period, while photobleaching of the entrapped dye was minimal over a 40 min period. The sensors ability to cross the cell membrane using the covalently attached synthetic Tat peptide is demonstrated. Cellular inclusion of the sensors occurred within a 30 min incubation period.


Asunto(s)
Calcio/análisis , Células Epiteliales/química , Animales , Transporte Biológico , Células CHO , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Cricetinae , Células Epiteliales/ultraestructura , Colorantes Fluorescentes/metabolismo , Productos del Gen tat/metabolismo , Humanos , Microscopía Electrónica , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA