Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Struct Mol Biol ; 30(8): 1119-1131, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291423

RESUMEN

The 5S ribonucleoprotein (RNP) is assembled from its three components (5S rRNA, Rpl5/uL18 and Rpl11/uL5) before being incorporated into the pre-60S subunit. However, when ribosome synthesis is disturbed, a free 5S RNP can enter the MDM2-p53 pathway to regulate cell cycle and apoptotic signaling. Here we reconstitute and determine the cryo-electron microscopy structure of the conserved hexameric 5S RNP with fungal or human factors. This reveals how the nascent 5S rRNA associates with the initial nuclear import complex Syo1-uL18-uL5 and, upon further recruitment of the nucleolar factors Rpf2 and Rrs1, develops into the 5S RNP precursor that can assemble into the pre-ribosome. In addition, we elucidate the structure of another 5S RNP intermediate, carrying the human ubiquitin ligase Mdm2, which unravels how this enzyme can be sequestered from its target substrate p53. Our data provide molecular insight into how the 5S RNP can mediate between ribosome biogenesis and cell proliferation.


Asunto(s)
ARN Ribosómico 5S , Proteína p53 Supresora de Tumor , Humanos , ARN Ribosómico 5S/química , Proteína p53 Supresora de Tumor/metabolismo , Microscopía por Crioelectrón , Proteínas Ribosómicas/metabolismo , Ribonucleoproteínas/metabolismo , Ribosomas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
2.
Cancers (Basel) ; 13(17)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34503286

RESUMEN

APR-246 (Eprenetapopt/PRIMA-1Met) is a very potent anti-cancer drug in clinical trials and was initially developed as a p53 refolding agent. As an alternative mode of action, the elevation of reactive oxygen species (ROS) has been proposed. Through an in silico analysis, we investigated the responses of approximately 800 cancer cell lines (50 entities; Cancer Therapeutics Response Portal, CTRP) to APR-246 treatment. In particular, neuroblastoma, lymphoma and acute lymphocytic leukemia cells were highly responsive. With gene expression data from the Cancer Cell Line Encyclopedia (CCLE; n = 883) and patient samples (n = 1643) from the INFORM registry study, we confirmed that these entities express low levels of SLC7A11, a previously described predictive biomarker for APR-246 responsiveness. Combining the CTRP drug response data with the respective CCLE gene expression profiles, we defined a novel gene signature, predicting the effectiveness of APR-246 treatment with a sensitivity of 90% and a specificity of 94%. We confirmed the predicted APR-246 sensitivity in 8/10 cell lines and in ex vivo cultures of patient samples. Moreover, the combination of ROS detoxification-impeding APR-246 with approved HDAC-inhibitors, known to elevate ROS, substantially increased APR-246 sensitivity in cell cultures and in vivo in two zebrafish neuroblastoma xenograft models. These data provide evidence that APR-246, in combination with HDAC-inhibitors, displays a novel potent targeted treatment option for neuroblastoma patients.

3.
Nat Commun ; 10(1): 2147, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31089132

RESUMEN

Cancer-relevant signalling pathways rely on bidirectional nucleocytoplasmic transport events through the nuclear pore complex (NPC). However, mechanisms by which individual NPC components (Nups) participate in the regulation of these pathways remain poorly understood. We discover by integrating large scale proteomics, polysome fractionation and a focused RNAi approach that Nup155 controls mRNA translation of p21 (CDKN1A), a key mediator of the p53 response. The underlying mechanism involves transcriptional regulation of the putative tRNA and rRNA methyltransferase FTSJ1 by Nup155. Furthermore, we observe that Nup155 and FTSJ1 are p53 repression targets and accordingly find a correlation between the p53 status, Nup155 and FTSJ1 expression in murine and human hepatocellular carcinoma. Our data suggest an unanticipated regulatory network linking translational control by and repression of a structural NPC component modulating the p53 pathway through its effectors.


Asunto(s)
Carcinoma Hepatocelular/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Neoplasias Hepáticas/patología , Metiltransferasas/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Conjuntos de Datos como Asunto , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Metiltransferasas/metabolismo , Ratones , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/metabolismo
4.
Annu Rev Biochem ; 88: 281-306, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30566372

RESUMEN

Ribosomes, which synthesize the proteins of a cell, comprise ribosomal RNA and ribosomal proteins, which coassemble hierarchically during a process termed ribosome biogenesis. Historically, biochemical and molecular biology approaches have revealed how preribosomal particles form and mature in consecutive steps, starting in the nucleolus and terminating after nuclear export into the cytoplasm. However, only recently, due to the revolution in cryo-electron microscopy, could pseudoatomic structures of different preribosomal particles be obtained. Together with in vitro maturation assays, these findings shed light on how nascent ribosomes progress stepwise along a dynamic biogenesis pathway. Preribosomes assemble gradually, chaperoned by a myriad of assembly factors and small nucleolar RNAs, before they reach maturity and enter translation. This information will lead to a better understanding of how ribosome synthesis is linked to other cellular pathways in humans and how it can cause diseases, including cancer, if disturbed.


Asunto(s)
Eucariontes/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Nucléolo Celular/metabolismo , Microscopía por Crioelectrón , Humanos , Biogénesis de Organelos , Multimerización de Proteína
5.
Nat Struct Mol Biol ; 23(1): 37-44, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26619264

RESUMEN

Ribosome synthesis is catalyzed by ∼200 assembly factors, which facilitate efficient production of mature ribosomes. Here, we determined the cryo-EM structure of a Saccharomyces cerevisiae nucleoplasmic pre-60S particle containing the dynein-related 550-kDa Rea1 AAA(+) ATPase and the Rix1 subcomplex. This particle differs from its preceding state, the early Arx1 particle, by two massive structural rearrangements: an ∼180° rotation of the 5S ribonucleoprotein complex and the central protuberance (CP) rRNA helices, and the removal of the 'foot' structure from the 3' end of the 5.8S rRNA. Progression from the Arx1 to the Rix1 particle was blocked by mutational perturbation of the Rix1-Rea1 interaction but not by a dominant-lethal Rea1 AAA(+) ATPase-ring mutant. After remodeling, the Rix1 subcomplex and Rea1 become suitably positioned to sense correct structural maturation of the CP, which allows unidirectional progression toward mature ribosomes.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Biogénesis de Organelos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Microscopía por Crioelectrón , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
6.
Cell ; 162(5): 1029-38, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317469

RESUMEN

The exosome regulates the processing, degradation, and surveillance of a plethora of RNA species. However, little is known about how the exosome recognizes and is recruited to its diverse substrates. We report the identification of adaptor proteins that recruit the exosome-associated helicase, Mtr4, to unique RNA substrates. Nop53, the yeast homolog of the tumor suppressor PICT1, targets Mtr4 to pre-ribosomal particles for exosome-mediated processing, while a second adaptor Utp18 recruits Mtr4 to cleaved rRNA fragments destined for degradation by the exosome. Both Nop53 and Utp18 contain the same consensus motif, through which they dock to the "arch" domain of Mtr4 and target it to specific substrates. These findings show that the exosome employs a general mechanism of recruitment to defined substrates and that this process is regulated through adaptor proteins.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Exosomas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Ascomicetos/química , Ascomicetos/clasificación , Ascomicetos/genética , ARN Helicasas DEAD-box/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia
7.
J Cell Biol ; 207(4): 481-98, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25404745

RESUMEN

Eukaryotic ribosome biogenesis involves ∼200 assembly factors, but how these contribute to ribosome maturation is poorly understood. Here, we identify a network of factors on the nascent 60S subunit that actively remodels preribosome structure. At its hub is Rsa4, a direct substrate of the force-generating ATPase Rea1. We show that Rsa4 is connected to the central protuberance by binding to Rpl5 and to ribosomal RNA (rRNA) helix 89 of the nascent peptidyl transferase center (PTC) through Nsa2. Importantly, Nsa2 binds to helix 89 before relocation of helix 89 to the PTC. Structure-based mutations of these factors reveal the functional importance of their interactions for ribosome assembly. Thus, Rsa4 is held tightly in the preribosome and can serve as a "distribution box," transmitting remodeling energy from Rea1 into the developing ribosome. We suggest that a relay-like factor network coupled to a mechano-enzyme is strategically positioned to relocate rRNA elements during ribosome maturation.


Asunto(s)
ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , Escherichia coli/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Ribosómicas/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Alineación de Secuencia
8.
Biochim Biophys Acta ; 1823(1): 92-100, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21763358

RESUMEN

The biogenesis of ribosomes is a fundamental cellular process, which provides the molecular machines that synthesize all cellular proteins. The assembly of eukaryotic ribosomes is a highly complex multi-step process that requires more than 200 ribosome biogenesis factors, which mediate a broad spectrum of maturation reactions. The participation of many energy-consuming enzymes (e.g. AAA-type ATPases, RNA helicases, and GTPases) in this process indicates that the expenditure of energy is required to drive ribosome assembly. While the precise function of many of these enzymes remains elusive, recent progress has revealed that the three AAA-type ATPases involved in 60S subunit biogenesis are specifically dedicated to the release and recycling of distinct biogenesis factors. In this review, we will highlight how the molecular power of yeast Drg1, Rix7, and Rea1 is harnessed to promote the release of their substrate proteins from evolving pre-60S particles and, where appropriate, discuss possible catalytic mechanisms.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Adenosina Trifosfatasas/química , Animales , Dominio Catalítico , Humanos , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Precursores del ARN/metabolismo , Proteínas Ribosómicas/metabolismo
9.
Mol Cell ; 38(5): 712-21, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20542003

RESUMEN

The AAA(+)-ATPase Rea1 removes the ribosome biogenesis factor Rsa4 from pre-60S ribosomal subunits in the nucleoplasm to drive nuclear export of the subunit. To do this, Rea1 utilizes a MIDAS domain to bind a conserved motif in Rsa4. Here, we show that the Rea1 MIDAS domain binds another pre-60S factor, Ytm1, via a related motif. In vivo Rea1 contacts Ytm1 before it contacts Rsa4, and its interaction with Ytm1 coincides with the exit of early pre-60S particles from the nucleolus to the nucleoplasm. In vitro, Rea1's ATPase activity triggers removal of the conserved nucleolar Ytm1-Erb1-Nop7 subcomplex from isolated early pre-60S particle. We suggest that the Rea1 AAA(+)-ATPase functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Nucléolo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
10.
Biochim Biophys Acta ; 1803(6): 673-83, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19879902

RESUMEN

Ribosome biogenesis is a fundamental process that provides cells with the molecular factories for cellular protein production. Accordingly, its misregulation lies at the heart of several hereditary diseases (e.g., Diamond-Blackfan anemia). The process of ribosome assembly comprises the processing and folding of the pre-rRNA and its concomitant assembly with the ribosomal proteins. Eukaryotic ribosome biogenesis relies on a large number (>200) of non-ribosomal factors, which confer directionality and accuracy to this process. Many of these non-ribosomal factors fall into different families of energy-consuming enzymes, notably including ATP-dependent RNA helicases, AAA-ATPases, GTPases, and kinases. Ribosome biogenesis is highly conserved within eukaryotic organisms; however, due to the combination of powerful genetic and biochemical methods, it is best studied in the yeast Saccharomyces cerevisiae. This review summarizes our current knowledge on eukaryotic ribosome assembly, with particular focus on the molecular role of the involved energy-consuming enzymes.


Asunto(s)
ARN Ribosómico/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Bioquímica/métodos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , GTP Fosfohidrolasas/metabolismo , Modelos Biológicos , Conformación Proteica , Estructura Terciaria de Proteína , Control de Calidad , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Cell ; 138(5): 911-22, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19737519

RESUMEN

The dynein-related AAA ATPase Rea1 is a preribosomal factor that triggers an unknown maturation step in 60S subunit biogenesis. Using electron microscopy, we show that Rea1's motor domain is docked to the pre-60S particle and its tail-like structure, harboring a metal ion-dependent adhesion site (MIDAS), protrudes from the preribosome. Typically, integrins utilize a MIDAS to bind extracellular ligands, an interaction that is strengthened under applied tensile force. Likewise, the Rea1 MIDAS binds the preribosomal factor Rsa4, which is located on the pre-60S subunit at a site that is contacted by the flexible Rea1 tail. The MIDAS-Rsa4 interaction is essential for ATP-dependent dissociation of a group of non-ribosomal factors from the pre-60S particle. Thus, Rea1 aligns with its interacting partners on the preribosome to effect a necessary step on the path to the export-competent 60S subunit.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/metabolismo , Citoplasma/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura
12.
EMBO J ; 24(3): 589-98, 2005 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-15660134

RESUMEN

Mitochondria perform a central function in the biogenesis of cellular iron-sulphur (Fe/S) proteins. It is unknown to date why this biosynthetic pathway is indispensable for life, the more so as no essential mitochondrial Fe/S proteins are known. Here, we show that the soluble ATP-binding cassette (ABC) protein Rli1p carries N-terminal Fe/S clusters that require the mitochondrial and cytosolic Fe/S protein biogenesis machineries for assembly. Mutations in critical cysteine residues of Rli1p abolish association with Fe/S clusters and lead to loss of cell viability. Hence, the essential character of Fe/S clusters in Rli1p explains the indispensable character of mitochondria in eukaryotes. We further report that Rli1p is associated with ribosomes and with Hcr1p, a protein involved in rRNA processing and translation initiation. Depletion of Rli1p causes a nuclear export defect of the small and large ribosomal subunits and subsequently a translational arrest. Thus, ribosome biogenesis and function are intimately linked to the crucial role of mitochondria in the maturation of the essential Fe/S protein Rli1p.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico Activo , Citosol/metabolismo , ADN de Hongos/genética , Genes Fúngicos , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA